View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pengembangan Back-End E-Commerce Analytic Tool untuk Deteksi Penjualan Pangan Olahan Ilegal

      Thumbnail
      View/Open
      Cover (297.2Kb)
      Fulltext (1.077Mb)
      Lampiran (243.2Kb)
      Date
      2025
      Author
      Fauzan, Fadil Muhammad
      Ramadhan, Dean Apriana
      Metadata
      Show full item record
      Abstract
      Pangan olahan memainkan peran krusial dalam kehidupan sehari-hari masyarakat modern, menyediakan alternatif konsumsi yang beragam. Regulasi yang ketat diperlukan untuk memastikan kualitas produk pangan dan obat. Direktorat Cegah Tangkal dari Badan Pengawas Obat dan Makanan (BPOM) memainkan peran penting dalam mengawasi peredaran obat dan makanan di masyarakat, khususnya dalam menghadapi tantangan peredaran pangan olahan ilegal melalui e-commerce. Dengan kemajuan teknologi, model machine learning dapat digunakan untuk mendeteksi peredaran pangan tanpa izin di internet. Penelitian ini mengembangkan modul back-end untuk mengintegrasikan model machine learning dengan modul front-end menggunakan REST API. Metode prototyping dipilih untuk memfasilitasi adaptasi terhadap perubahan kebutuhan pengguna. Pada penelitian ini modul back-end berhasil mengintegrasikan model machine learning dengan aplikasi E-Commerce Analytic Tool, memungkinkan front-end untuk mengambil hasil analisis secara efisien dengan meminimalkan jumlah request ke server melalui komunikasi yang teroptimasi. Pengembangan ini mendukung upaya Direktorat Cegah Tangkal BPOM dalam meningkatkan pemantauan dan pengendalian pangan olahan ilegal melalui platform digital.
       
      Processed foods play a crucial role in modern society, offering diverse consumption alternatives. Strict regulations are essential to ensure the quality of food and drugs. The Directorate of Prevention at the Indonesian Food and Drug Authority (BPOM) plays a vital role in overseeing the distribution of drugs and food in the community, particularly in addressing the challenges posed by the circulation of illegal processed food through e-commerce. With technological advancements, machine learning models can now detect Unauthorized food distribution on the internet. This research develops a back-end module to integrate machine learning models with the front-end using REST API. Prototyping was chosen to facilitate adaptation to changing user needs. The back-end API successfully integrates a machine learning model with the E-Commerce Analytic Tool application's back-end, enabling efficient analysis retrieval by the front-end through server-side communication. This development supports BPOM's efforts to enhance monitoring and control of illegal processed food through digital platforms.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/162467
      Collections
      • UT - Computer Science [88]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository