View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Actuaria
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Actuaria
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penghitungan Total Kerugian Asuransi Kesehatan dengan Policy Limit dan Coinsurance Menggunakan Simulasi Monte Carlo

      Thumbnail
      View/Open
      Cover (636.1Kb)
      Fulltext (1.822Mb)
      Lampiran (291.7Kb)
      Date
      2025
      Author
      Wibowo, Lita Yulika
      Setiawaty, Berlian
      Metadata
      Show full item record
      Abstract
      Asuransi kesehatan merupakan mekanisme penting dalam mengelola risiko finansial akibat kejadian tak terduga bagi individu. Agar perlindungan tetap berkelanjutan tanpa merugikan perusahaan, polis harus dirancang secara cermat. Salah satu strategi yang diterapkan adalah policy adjustments seperti policy limit dan coinsurance. Penelitian ini bertujuan mengidentifikasi sebaran banyak dan besar klaim berdasarkan data asuransi kesehatan tahun 2022 menggunakan metode Maximum Likelihood Estimation untuk menduga parameter. Sebaran tersebut digunakan untuk membentuk sebaran gabungan dalam perhitungan total kerugian melalui simulasi Monte Carlo, serta menganalisis pengaruh policy adjustments terhadap total kerugian berdasarkan Loss Elimination Ratio (LER), yaitu rasio yang menggambarkan proporsi kerugian yang dieliminasi oleh perusahaan akibat kebijakan tersebut. Hasil menunjukkan bahwa banyak klaim mengikuti sebaran zero-truncated binomial negatif dan besar klaim mengikuti sebaran Pareto tipe II. Simulasi memperlihatkan bahwa peningkatan policy limit dan coinsurance menurunkan nilai LER, dengan pola hampir linear pada coinsurance. Kombinasi keduanya memberikan penurunan kerugian paling besar, tercermin dari LER tertinggi. Namun, pendekatan ini justru dapat mengurangi daya tarik produk asuransi bagi pemegang polis karena meningkatkan porsi kerugian yang harus mereka tanggung.
       
      Health insurance is a key mechanism for managing individuals' financial risk from unexpected health events. To ensure sustainable protection without disadvantaging insurers, policy design must be carefully planned. One common strategy is applying policy adjustments such as policy limits and coinsurance. This study aims to identify suitable distributions for claim frequency and severity using 2022 health insurance data, with parameter estimation done via Maximum Likelihood Estimation. The resulting distributions are combined to simulate total loss using the Monte Carlo method, and to analyze the impact of policy adjustments through the Loss Elimination Ratio (LER)—a measure of the proportion of loss eliminated due to policy provisions. Results show that claim frequency follows a zero-truncated negative binomial distribution, and severity follows a Type II Pareto distribution. Simulations reveal that increasing policy limit and coinsurance both reduce LER, with coinsurance showing an almost linear decrease. The combination of both adjustments yields the highest LER, indicating the most significant loss reduction for insurers. However, this approach may lower product appeal for policyholders due to the increased share of loss they must bear.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/161682
      Collections
      • UT - Actuaria [205]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository