View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Actuaria
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Actuaria
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Survival Pasien Insufficiencia Cordis Menggunakan Model Regresi Weibull dan Model Regresi Cox Proportional Hazard

      Thumbnail
      View/Open
      Cover (731.9Kb)
      Fulltext (2.171Mb)
      Lampiran (575.6Kb)
      Date
      2025
      Author
      Fidiana, Dwi
      Budiarti, Retno
      Purnaba, I Gusti Putu
      Metadata
      Show full item record
      Abstract
      Analisis survival digunakan untuk mengevaluasi durasi waktu dari awal pengamatan hingga terjadinya suatu peristiwa, seperti kesembuhan atau kematian. Penelitian ini memfokuskan pada pasien insufficiencia cordis, salah satu penyakit kardiovaskular yang menjadi penyebab utama kematian di dunia. Analisis dilakukan dengan pendekatan parametrik (regresi Weibull) dan semi-parametrik (Cox Proportional Hazard). Model regresi Weibull menjadi model terbaik dengan nilai AIC 127,50 dan MSE 0,5071. Variabel signifikan yang memengaruhi analisis survival pada penelitian ini adalah age, ejection fraction, serum sodium, platelets, dan serum creatinine. Penelitian ini memberikan kontribusi signifikan bagi dunia medis dan industri asuransi, memungkinkan identifikasi faktor risiko yang lebih akurat dan mendukung pengambilan keputusan dalam strategi penanganan medis serta penetapan premi asuransi yang berbasis risiko.
       
      Survival analysis is employed to evaluate the duration from the start of observation to the occurrence of an Event, such as recovery or death. This study focuses on patients with insufficiencia cordis, a cardiovascular disease that is one of the leading causes of mortality worldwide. The analysis was conducted using parametric (Weibull regression) and semi-parametric (Cox Proportional Hazard) approaches. The Weibull regression model was identified as the best-performing model, with an AIC value of 127,50 and an MSE of 0,5071. Significant variabels influencing clinical improvement include age, ejection fraction, serum sodium, platelets, and serum creatinine. This research provides significant contributions to the medical field and the insurance industry, facilitating more accurate identification of risk factors and supporting informed decision-making in medical treatment strategies and the determination of risk-based insurance premiums.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/161679
      Collections
      • UT - Actuaria [54]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository