Optimalisasi Portofolio Menggunakan Semi Mean Absolute Deviation Berdasarkan Hasil Clustering Saham di Indonesia
Date
2025Author
Kusuma, Ravy Ardian
Budiarti, Retno
Supriyo, Prapto Tri
Metadata
Show full item recordAbstract
Pembentukan portofolio saham optimal melibatkan keputusan investasi yang kompleks, terutama dalam memilih saham potensial di pasar modal. Penelitian ini mengusulkan pendekatan gabungan antara metode clustering K-Means dan optimasi Semi Mean Absolute Deviation (Semi-MAD). Saham-saham di Bursa Efek Indonesia dikelompokkan menggunakan algoritma K-Means berdasarkan return dan volatilitas yang menghasilkan dua cluster optimal. Cluster 1 (587 saham) dengan return tinggi dan risiko rendah, serta cluster 2 (116 saham) dengan karakteristik sebaliknya. Portofolio optimal dibentuk menggunakan model optimasi Semi-MAD yang diimplementasikan melalui teknik linear programming, dengan tujuh skenario berbeda berdasarkan kriteria tertentu. Hasil penelitian menunjukkan bahwa kompleksitas masalah optimasi meningkat seiring dengan bertambahnya jumlah saham. Namun, masalah berdimensi besar ini dapat diatasi dengan linear programming untuk mencapai portofolio optimal. Kombinasi clustering dan optimasi ini memberikan solusi sistematis dalam pengambilan keputusan investasi. The construction of an optimal stock portfolio involves complex investment decisions, particularly when selecting potential stocks in the capital market. This study proposes a combined approach using K-Means clustering method and Semi Mean Absolute Deviation (Semi-MAD) optimization. Stocks listed on the Indonesia Stock Exchange were grouped using the K-Means algorithm based on return and volatility, resulting in two optimal clusters. Cluster 1 (587 stocks) with high returns and low risk, and Cluster 2 (116 stocks) with opposite characteristics. The optimal portfolio was constructed using the Semi-MAD optimization model implemented through linear programming techniques, with seven different scenarios based on specific criteria. The research results show that optimization complexity increases with the number of stocks. However, this large-scale problem can be solved using linear programming to achieve an optimal portfolio. The combination of clustering and optimization provides a systematic solution for investment decision-making.
Collections
- UT - Actuaria [54]
