Show simple item record

dc.contributor.advisorMurdiyarso
dc.contributor.authorSulthan, Daffa Rizq
dc.date.accessioned2025-05-05T23:37:23Z
dc.date.available2025-05-05T23:37:23Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/161631
dc.description.abstractEkosistem mangrove menyediakan jasa lingkungan berupa penyimpanan karbon dalam jumlah yang signifikan. Namun, terdapat ancaman degradasi dan deforestasi yang dapat menganggu fungsi penyimpanan mangrove terutama kantong penyimpanan karbon di atas permukaan tanah (AGC). Oleh karena itu, penelitian ini melakukan peninjauan dan sintesis nilai AGC yang diestimasi menggunakan penginderaan jauh. Studi ini secara sistematis meninjau literatur dengan menyaring judul, abstrak, dan teks lengkap. Artikel diperoleh melalui Web of Science dan Scopus, 99 artikel terpilih dari 766 artikel yang diterbitkan antara tahun 2000 sampai 2024. Hasil sintesis menunjukkan bahwa rata-rata AGC mangrove global sebesar 67,85 ± 22,58 Mg C/ha. Rentang rata-rata nilai AGC mangrove berdasarkan benua cenderung berbeda, Benua Asia berada pada rentang 20,06 sampai 103,65 Mg C/ha, Afrika 27,31 sampai 83,23 Mg C/ha, Amerika 18,22 sampai 130,75 Mg C/ha, dan Oseania 33,20 sampai 86,01 Mg C/ha. Penelitian ini menemukan bahwa data multi-sensor menjadi sumber data yang paling banyak digunakan (59%). Platform citra satelit yang paling diminati adalah Sentinel-2. Fitur vegetasi yang paling banyak digunakan adalah fitur spektral. Model yang dibangun untuk mengestimasi AGC didominasi oleh regresi linear dan algoritma random forest. Penelitian ini menemukan bahwa model non-parametrik machine learning menjadi model yang optimal untuk mengestimasi AGC.
dc.description.abstractMangrove ecosystems provide significant environmental services in the form of carbon storage. However, threats of degradation and deforestation can disrupt the storage function of mangroves, especially the aboveground carbon stock (AGC). Therefore, this study reviewed and synthesized AGC values estimated using remote sensing. This study systematically reviewed the literature by screening titles, abstracts, and full texts. Articles were obtained through Web of Science and Scopus. Ninety-nine articles were selected from 766 articles published between 2000 and 2024. The average global mangrove AGC was 67,85 ± 22,58 Mg C/ha. The average range of mangrove AGC values by continent tends to differ, with Asia ranging from 20,06 to 103,65 Mg C/ha, Africa from 27,31 to 83,23 Mg C/ha, the Americas from 18,22 to 130,75 Mg C/ha, and Oceania from 33,20 to 86,01 Mg C/ha. The study found that multi-sensor data was the most widely used source (59%). The most popular satellite imagery platform was Sentinel-2. The most commonly used vegetation feature was the spectral feature. The models built to estimate AGC are dominated by linear regression and random forest algorithms. This study also found that the non-parametric-based machine learning model is optimal for estimating AGC.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titleTinjauan Pustaka Sistematis: Pendugaan Cadangan Karbon di Atas Permukaan Tanah Mangrove Global berbasis Penginderaan Jauhid
dc.title.alternativeSystematic Literature Review of Estimation Global Mangrove Aboveground Carbon Stock Using Remote Sensing
dc.typeSkripsi
dc.subject.keywordcadangan karbonid
dc.subject.keywordekosistem mangroveid
dc.subject.keywordjasa lingkunganid
dc.subject.keywordpenginderaan jauhid
dc.subject.keywordmitigasi perubahan iklimid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record