Show simple item record

dc.contributor.advisorSetiawaty, Berlian
dc.contributor.advisorBudiarti, Retno
dc.contributor.authorFauzia, Syifa
dc.date.accessioned2025-05-05T23:29:46Z
dc.date.available2025-05-05T23:29:46Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/161628
dc.description.abstractIndonesia dikenal sebagai negara agraris karena mayoritas penduduknya bekerja sebagai petani. Pertanian sangat dipengaruhi oleh perubahan iklim dengan risiko iklim ekstrem seperti banjir dan kekeringan yang memiliki dampak besar pada bidang pertanian. Oleh karena itu, dibutuhkan pemodelan curah hujan Kabupaten Tabanan untuk membantu petani dalam banyak aspek pertanian, seperti penentuan jadwal tanam yang optimal, memperkirakan kebutuhan irigasi, hingga mengantisipasi risiko yang mungkin akan timbul akibat anomali cuaca. Penelitian ini menggunakan metode Seasonal Autoregressive Integrated Moving Average. Pemodelan dilakukan pada data curah hujan 15-harian pada periode 2010 hingga 2023 di Kabupaten Tabanan, Bali. Hasil penelitian menunjukkan bahwa model terbaik adalah SARIMA(2,0,0)(0,1,1)24 dengan nilai MAPE untuk data training sebesar 8,99% dan 9,64% untuk data testing. Dapat disimpulkan bahwa model SARIMA memiliki akurasi yang sangat baik dalam memodelkan curah hujan Kabupaten Tabanan.
dc.description.abstractIndonesia is known as an agricultural country as the majority of its population work as farmers. Agriculture is greatly affected by climate change with the risk of extreme climates such as floods and droughts that have a major impact on agriculture. Therefore, rainfall modeling of Tabanan Regency is needed to assist farmers in many aspects of agriculture, such as determining the optimal planting schedule, estimating irrigation needs, and anticipating risks that may arise due to weather anomalies. This research uses the Seasonal Autoregressive Integrated Moving Average method. Modelling was conducted on 15-day rainfall data for the period 2010 to 2023 in Tabanan Regency, Bali. The results showed that the best model is SARIMA(2,0,0)(0,1,1)24 with a MAPE value for training data of 8,99% and 9,64% for testing data. It can be concluded that the SARIMA model has very good accuracy in modeling rainfall in Tabanan Regency.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titlePemodelan Curah Hujan Kabupaten Tabanan Menggunakan Seasonal Autoregressive Integrated Moving Averageid
dc.title.alternativeTabanan Regency Rainfall Modelling Using Seasonal Autoregressive Integrated Moving Average
dc.typeSkripsi
dc.subject.keywordpemodelanid
dc.subject.keywordcurah hujanid
dc.subject.keywordSARIMAid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record