Show simple item record

dc.contributor.advisorBukhari, Fahren
dc.contributor.advisorBudiarti, Retno
dc.contributor.authorTaslim, Gilberto Daniel Dwi Putra
dc.date.accessioned2025-03-17T23:39:49Z
dc.date.available2025-03-17T23:39:49Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/161416
dc.description.abstractPasar modal di Indonesia, yang diwakili oleh Indeks Harga Saham Gabungan (IHSG), memainkan peran penting dalam perekonomian nasional. Penelitian ini membandingkan kinerja model Double Exponential Smoothing (DES) dan Autoregressive Integrated Moving Average (ARIMA) dalam meramalkan IHSG menggunakan data harian dari Yahoo Finance periode 11 Mei 2020 hingga 23 Agustus 2024. Data dibagi menjadi 90% untuk data training dan 10% untuk data testing. Model DES dengan parameter ?? = 0,5216 dipilih sebagai model terbaik berdasarkan uji penyesuaian, sementara ARIMA(2,1,2) terpilih sebagai model yang sesuai berdasarkan kriteria AIC dan uji formal. Hasil penelitian menunjukkan bahwa DES memiliki akurasi lebih baik dengan nilai MAPE lebih rendah (0,29%) dibandingkan ARIMA (7,71%). DES cenderung lebih efektif dalam mengidentifikasi tren jangka panjang yang stabil, sehingga lebih cocok diterapkan pada data dengan pola tren yang konsisten.
dc.description.abstractThe capital market in Indonesia, represented by the Jakarta Composite Index (JCI), plays an important role in the national economy. This study compares the performance of Double Exponential Smoothing (DES) and Autoregressive Integrated Moving Average (ARIMA) models in forecasting JCI using daily data from Yahoo Finance for the period May 11, 2020 to August 23, 2024. The data is divided into 90% for training data and 10% for testing data. The DES model with parameter ?? = 0.5216 was selected as the best model based on the adjustment test, while ARIMA(2,1,2) was selected as the suitable model based on AIC criteria and formal test. The results show that DES has better accuracy with lower MAPE value (0.29%) than ARIMA (7,71%). DES tends to be more effective in identifying stable long-term trends, making it more suitable for data with consistent trend patterns.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titlePerbandingan Kinerja Model Double Exponential Smoothing dan ARIMA dalam Peramalan Indeks Harga Saham Gabunganid
dc.title.alternativeComparison of Double Exponential Smoothing and ARIMA Model Performance in Forecasting Jakarta Composite Index
dc.typeSkripsi
dc.subject.keywordARIMAid
dc.subject.keywordDouble Exponential Smoothingid
dc.subject.keywordPeramalanid
dc.subject.keywordIndeks Harga Saham Gabunganid
dc.subject.keywordPerbandingan Modelid


Files in this item

No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]

This item appears in the following Collection(s)

Show simple item record