View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Perbandingan Kinerja Model Double Exponential Smoothing dan ARIMA dalam Peramalan Indeks Harga Saham Gabungan

      Thumbnail
      View/Open
      Cover (207.5Kb)
      Fulltext (2.728Mb)
      Lampiran (137.3Kb)
      Date
      2025
      Author
      Taslim, Gilberto Daniel Dwi Putra
      Bukhari, Fahren
      Budiarti, Retno
      Metadata
      Show full item record
      Abstract
      Pasar modal di Indonesia, yang diwakili oleh Indeks Harga Saham Gabungan (IHSG), memainkan peran penting dalam perekonomian nasional. Penelitian ini membandingkan kinerja model Double Exponential Smoothing (DES) dan Autoregressive Integrated Moving Average (ARIMA) dalam meramalkan IHSG menggunakan data harian dari Yahoo Finance periode 11 Mei 2020 hingga 23 Agustus 2024. Data dibagi menjadi 90% untuk data training dan 10% untuk data testing. Model DES dengan parameter ?? = 0,5216 dipilih sebagai model terbaik berdasarkan uji penyesuaian, sementara ARIMA(2,1,2) terpilih sebagai model yang sesuai berdasarkan kriteria AIC dan uji formal. Hasil penelitian menunjukkan bahwa DES memiliki akurasi lebih baik dengan nilai MAPE lebih rendah (0,29%) dibandingkan ARIMA (7,71%). DES cenderung lebih efektif dalam mengidentifikasi tren jangka panjang yang stabil, sehingga lebih cocok diterapkan pada data dengan pola tren yang konsisten.
       
      The capital market in Indonesia, represented by the Jakarta Composite Index (JCI), plays an important role in the national economy. This study compares the performance of Double Exponential Smoothing (DES) and Autoregressive Integrated Moving Average (ARIMA) models in forecasting JCI using daily data from Yahoo Finance for the period May 11, 2020 to August 23, 2024. The data is divided into 90% for training data and 10% for testing data. The DES model with parameter ?? = 0.5216 was selected as the best model based on the adjustment test, while ARIMA(2,1,2) was selected as the suitable model based on AIC criteria and formal test. The results show that DES has better accuracy with lower MAPE value (0.29%) than ARIMA (7,71%). DES tends to be more effective in identifying stable long-term trends, making it more suitable for data with consistent trend patterns.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/161416
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository