Penentuan Value at Risk dan Tail Value at Risk Return Saham Bayer Menggunakan Hidden Markov Model
Abstract
Penelitian ini memodelkan harga saham Bayer yang disesuaikan menggunakan Hidden Markov Model (HMM) kemudian menentukan Value at Risk (VaR) dan Tail Value at Risk Return (TVaR) dari return. Data dibagi menjadi data latih dan data uji. Metode yang digunakan dalam pemodelan adalah menentukan parameter HMM diskret dari data kemudian mengembangkannya menjadi HMM kontinu dengan menentukan sebaran data yang dibangkitkan pada setiap hidden state. Harga saham akhir didapatkan dari rata-rata 17 data harga yang dibangkitkan menggunakan HMM. Prediksi harga saham memberikan keakuratan terbaik saat durasi prediksi yang digunakan pendek, yakni satu bulan. Keakuratan prediksi berkurang seiring bertambahnya panjang durasi prediksi. Return kemudian dihitung menggunakan mekanisme log return. Nilai VaR dan TVaR dari return data latih memberikan keakuratan yang bervariasi dari sangat baik, baik, hingga layak. Pada data uji, keakuratan VaR dan TVaR bervariasi antara sangat baik dan baik. Secara keseluruhan, TVaR pada data uji memiliki keakuratan yang lebih baik dibandingkan VaR. This study models the adjusted stock price of Bayer using a Hidden Markov Model (HMM) and determines the Value at Risk (VaR) and Tail Value at Risk (TVaR) of return. Adjusted stock price data is divided into training and testing sets. The method in this study involves estimating the parameters of the discrete HMM from the data and then extending it to a continuous HMM by defining the distribution for each hidden state. The final stock price is obtained as the average of 17 price data points generated using the HMM. Stock price prediction achieves the highest accuracy when the prediction duration is short, specifically one month. The accuracy of the prediction decreases as the prediction duration increases. Returns are calculated using the log return formula. The VaR and TVaR values from the training data returns exhibit accuracy ranging from highly accurate to reasonable forecasting. In the testing data, the accuracy of VaR and TVaR varies between highly accurate and good forecasting. Overall, TVaR in the testing data demonstrates better accuracy compared to VaR.