View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - School of Data Science, Mathematic and Informatics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - School of Data Science, Mathematic and Informatics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Implementasi Regresi Terboboti Geografis Temporal Gamma pada Kasus Kemiskinan di Provinsi Bengkulu

      Thumbnail
      View/Open
      Cover (745.0Kb)
      Fulltext (1.303Mb)
      Lampiran (613.6Kb)
      Date
      2025
      Author
      Azagi, Ilham Alifa
      Sumertajaya, I Made
      Saefuddin, Asep
      Metadata
      Show full item record
      Abstract
      Analisis spasial menawarkan perspektif khusus melalui referensi keruangan yang digunakan secara eksplisit. Pendekatan ini telah diaplikasikan secara luas yang menjadikannya relevan untuk memahami pola dan hubungan dalam berbagai bidang, seperti sosial, ekonomi, dan lingkungan. Salah satu analisis spasial adalah model Regresi Terboboti Geografis Temporal (RTGT) dan model Regresi Terboboti Geografis Temporal Gamma (RTGTG). Analisis ini dilakukan pada kasus kemiskinan. Kemiskinan merupakan salah satu persoalan mendasar yang menjadi permasalahan di negara mana pun. Pada tahun 2022 Indonesia memiliki 38 Provinsi, salah satunya yaitu Provinsi Bengkulu. Menurut badan pusat statistik, Provinsi Bengkulu termasuk ke dalam 10 Provinsi termiskin di Indonesia. Faktor-faktor yang diteliti pengaruhnya terhadap penduduk miskin yaitu jumlah penduduk, angka harapan hidup, angka melek huruf, rata-rata lama sekolah, pengeluaran per kapita yang disesuaikan, angka partisipasi sekolah, pengeluaran per kapita untuk makanan, dan PDRB. Berdasarkan kriteria model diperoleh model terbaik yaitu model RTGTG. Hal ini dikarenakan model RTGTG memiliki nilai R^2 terbesar untuk pemodelannya. Model ini memiliki nilai koefisien determinasi sebesar 95,2% dijelaskan oleh angka harapan hidup, angka melek huruf, rata-rata lama sekolah, dan pengeluaran per kapita yang disesuaikan, sedangkan sisanya dijelaskan oleh peubah lain. Peubah yang berpengaruh untuk menggunakan RTGTG berdasarkan setiap lokasi dan waktu tahun 2015-2022.
       
      Spatial analysis offers a unique perspective through the explicit use of spatial references. This approach has been widely applied, making it relevant for understanding patterns and relationships in various fields such as social, economic, and environmental studies. One type of spatial analysis is the Temporal Geographically Weighted Regression (GTWR) model and the Gamma Temporal Geographically Weighted Regression (GGTWR) model. This analysis was conducted in the case of poverty. Poverty is one of the fundamental issues faced by any country. In 2022, Indonesia has 38 provinces, one of which is Bengkulu Province. According to the Central Statistics Agency, Bengkulu Province is among the 10 poorest provinces in Indonesia. The factors studied for their influence on the poor population include population size, life expectancy, literacy rate, average years of schooling, adjusted per capita expenditure, school participation rate, per capita expenditure on food, and Gross Regional Domestic Product (GRDP). Based on model criteria, the best model obtained is the GGTWR model. This is because the GGTWR model has the highest R^2 value for the model. This model has a coefficient of determination of 95,2%, explained by life expectancy, literacy rate, average years of schooling, and adjusted per capita expenditure, while the remaining variation is explained by other variables. The variables that influence the use of GGTWR vary by location and time between 2015 and 2022.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/161332
      Collections
      • MT - School of Data Science, Mathematic and Informatics [69]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository