Perbandingan Kinerja Algoritma Grid Search dan IPSO dalam Memprediksi Harga Saham Tesla, Inc
Date
2025Author
Wicaksono, Muhammad Aryo
Mangku, I Wayan
Ardana, Ngakan Komang Kutha
Metadata
Show full item recordAbstract
Saham merupakan salah satu instrumen investasi populer di pasar keuangan karena potensi keuntungannya. Namun, karakteristik harga saham yang tidak stasioner, non-linear, dan cepat berubah membuat prediksi pergerakan harga saham menjadi tantangan. Investor memerlukan metode yang akurat untuk dapat mengambil keputusan mengenai waktu yang optimal untuk membeli, menjual, atau mempertahankan. Penelitian ini bertujuan untuk membangun model prediksi harga saham Tesla, Inc. dengan menggunakan pendekatan Support Vector Regression yang dioptimalkan melalui Algoritma Grid Search dan Improved-Particle Swarm Optimization (IPSO) untuk menentukan parameter terpilih. Selain itu, model prediksi digunakan untuk memproyeksikan harga saham pada satu bulan berikutnya. Hasil dari penelitian ini menunjukkan bahwa model SVR yang dioptimalkan menggunakan kedua algoritma tersebut menghasilkan kinerja yang sama baiknya. Akan tetapi, penggunaan metode IPSO terbukti lebih unggul dalam hal akurasi dan efisiensi, menghasilkan nilai MAPE sebesar 2,69% dan R² sebesar 97,26% pada data pengujian. Prediksi untuk periode Januari 2024, menunjukkan tren penurunan harga dari 253.144 USD hingga 252.521 USD. Stocks are one of the most popular investment instruments in the financial market due to their potential returns. However, the non-stationary, non-linear, and rapidly changing nature of stock prices makes predicting their movements a challenge. Investors need accurate methods to make decisions on the optimal timing to buy, sell, or hold. This study aims to develop a predictive model for the stock prices of Tesla, Inc. using a Support Vector Regression (SVR) approach optimized through the Grid Search Algorithm and Improved Particle Swarm Optimization (IPSO) to determine the optimal parameters. Additionally, the predictive model is utilized to forecast stock prices for the following month. The results of this study show that the SVR model optimized using both algorithms delivers equally robust performance. However, the use of the IPSO method proved superior in terms of accuracy and efficiency, yielding a MAPE value of 2.69% and an R² value of 97.26% on test data. Predictions for the January 2024 period indicate a downward price trend from USD 253.144 to USD 252.521.