Show simple item record

dc.contributor.advisorMunibah, Khursatul
dc.contributor.advisorArdiansyah, Muhammad
dc.contributor.authorAina, Arieza Andriani Nur
dc.date.accessioned2025-01-23T08:04:50Z
dc.date.available2025-01-23T08:04:50Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/160956
dc.description.abstractSektor hortikultura merupakan salah satu subsektor pertanian yang meliputi berbagai jenis tanaman buah-buahan, sayur-sayuran, bunga, dan tanaman hias. Hortikultura memiliki peran dalam mendukung perekonomian nasional. Pengelolaan sumber daya yang berkelanjutan untuk meningkatkan efektivitas produksi hortikultura dapat memanfaatkan teknologi seperti penginderaan jauh. Citra penginderaan jauh bervariasi dari resolusi rendah hingga tinggi, seperti MODIS (1 km); Landsat (30 m) dan Sentinel-2A (20, 10 m); IKONOS (1– 4 m) dan citra Unmanned Aerial Vehicle (< 1 m). Akuisisi citra untuk lahan pertanian hortikultura yang memiliki petakan kecil dapat menggunakan Unmanned Aerial Vehicle (UAV) sebagai alternatif karena memiliki resolusi yang tinggi. Oleh karena itu, tujuan penelitian ini adalah (1) menganalisis pola spektral tanaman hortikultura berdasarkan citra UAV multispektral; (2) menganalisis tingkat ketelitian klasifikasi tanaman hortikultura dengan metode k-Nearest Neighbor (k-NN) dan Minimum Distance Classification (MDC); (3) memetakan tanaman hortikultura dari kedua metode tersebut. Lokasi penelitian berada di Kebun Percobaan Pasir Sarongge, Kabupaten Cianjur menggunakan titik observasi lapang dan citra UAV multispektral pada akuisisi 6 November 2022. Analisis pola spektral sampel dilakukan dengan mengambil titik sampel dari 11 kelas yang meliputi hortikultura dan non hortikultura yang selanjutnya dibuat kurva karakteristik spektral.vKlasifikasi citra menggunakan metode k-NN dan MDC dinilai berdasarkan overall accuracy melalui matriks kesalahan. Hasil penelitian menunjukkan bahwa respon spektral hortikultura pada band hijau dan merah rendah, pada band tepi merah terjadi peningkatan secara signifikan dan terus meningkat di band NIR. Hasil klasifikasi tanaman hortikultura dengan metode k-NN dan MDC menunjukkan urutan luasan yang berbeda. Urutan terluas pada k-NN adalah cabai, wortel, kentang, pisang, kubis, bawang merah, dan tomat. Sementara itu, urutan terluas pada MDC adalah cabai, pisang, wortel, kubis, kentang, bawang merah, dan tomat. Perbedaan algoritma pengklasifikasian menyebabkan variasi dalam urutan luasan hasil klasifikasi. Overall accuracy untuk k-NN dan MDC masing-masing sebesar 89.37% dan 51.48%.
dc.description.abstractThe horticulture sector is one of the agricultural subsectors that includes various types of fruit plants, vegetables, flowers, and ornamental plants. Horticulture has a role in supporting the national economy. Sustainable resource management to increase the effectiveness of horticultural production can utilize technologies such as remote sensing. Remote sensing images vary from low to high resolution, such as MODIS (1 km); Landsat (30 m) and Sentinel-2A (20, 10 m); IKONOS (1- 4 m) and Unmanned Aerial Vehicle images (< 1 m). Image acquisition for horticultural farmland that has small plots can use Unmanned Aerial Vehicles (UAV) as an alternative because it has a high resolution. Therefore, the objectives of this study were (1) to analyze the spectral patterns of horticultural crops based on multispectral UAV imagery; (2) to analyze the accuracy of horticultural crop classification using the k-Nearest Neighbor (k-NN) and Minimum Distance Classification (MDC) methods; (3) to mapping horticultural crops from both methods. The research location was at Pasir Sarongge Experimental Farm, Cianjur Regency using field observation points and multispectral UAV images on November 6, 2022 acquisition. Spectral pattern analysis of samples was carried out by taking sample points from 11 classes covering horticulture and non-horticulture which were then made spectral characteristic curves. Image classification using the k-NN and MDC methods was assessed based on the overall accuracy through the confusion matrix. The results showed that the spectral response of horticulture in the green and red bands was low, in the red edge band there was a significant increase and continued to increase in the NIR band. The classification results of horticultural crops with k-NN and MDC methods show a different order of area. The largest order in k-NN is chili, carrot, potato, banana, cabbage, shallot, and tomato. Meanwhile, the largest order in MDC is chili, banana, carrot, cabbage, potato, shallot, and tomato. The difference in classification algorithms causes variations in the order of area of the classification results. Overall accuracy for k-NN and MDC is 89.37% and 51.48%, respectively
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titleKlasfikasi Tanaman Hortikultura Berbasis Citra UAV Multispektral dengan Pendekatan k-Nearest Neighbor dan Minimum Distanceid
dc.title.alternativeClassification of Horticultural Commodities based on Multispectral UAV Image with k-Nearest Neighbor and Minimum Distance Approach
dc.typeSkripsi
dc.subject.keywordAkurasiid
dc.subject.keywordDroneid
dc.subject.keywordRespon Spektralid
dc.subject.keywordSensor Parrot Sequoiaid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record