View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - School of Data Science, Mathematic and Informatics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - School of Data Science, Mathematic and Informatics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Kestabilan Model Matematika SEIR Pada Penyebaran Penyakit Tuberkulosis

      No Thumbnail [100%x80]
      View/Open
      Cover (374.6Kb)
      Fulltext (3.647Mb)
      Lampiran (2.746Mb)
      Date
      2025
      Author
      Junior, Patrick
      Jaharuddin
      Mas'oed, Teduh Wulandari
      Metadata
      Show full item record
      Abstract
      Tuberkulosis (TBC atau TB) adalah penyakit menular yang disebabkan oleh bakteri mycobacterium tuberculosis (mtb) dan dapat menyebar melalui udara. Dampak dari penyakit ini adalah terjadinya peningkatan kematian setiap tahunnya di berbagai negara. Penelitian ini bertujuan untuk menganalisis model penyebaran penyakit tuberculosis. Terdapat dua titik tetap, yaitu titik tetap bebas penyakit dan titik tetap endemik. Dalam analisis diperoleh bahwa titik tetap bebas penyakit stabil asimtotik lokal jika bilangan reproduksi dasarnya (R_0 ) kurang dari satu. Ada dua parameter yang disimulasikan, dari kedua parameter tersebut parameter yang dapat membuat nilai R_0<1 yaitu ? (laju kesembuhan dari terinfeksi menjadi sembuh). Kata kunci: fungsi Lyapunov, penyebaran tuberkulosis, model matematika
       
      Tuberculosis (TBC or TB) is an infectious disease caused by the bacteria mycobacterium tuberculosis (mtb) and can spreads through air. The impact of this disease is an increase in deaths every year in various countries. This research aims to analyze models of the spread of tuberculosis. There are two fixed points, namely the disease-free fixed point and the endemic fixed point. In the analysis, it is found that the disease-free fixed point is locally asymptotically stable if the basic reproduction number (R_0) is less than one. There are two parameters that are simulated, of these two parameters the parameter that can make the R_0<1 is ? (cure rate from infected to cured) Key words: Lyapunov function, spread of tuberculosis, mathematical model
       
      URI
      http://repository.ipb.ac.id/handle/123456789/160942
      Collections
      • UT - School of Data Science, Mathematic and Informatics [47]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      NoThumbnail