Pendekatan Penyelesaian Masalah Aliran Fluida Blasius dengan Menggunakan Metode Homotopi Optimal
Date
2025Author
Hanifan, Muhammad Faza
Jaharuddin
Mas'oed, Teduh Wulandari
Metadata
Show full item recordAbstract
Model matematika dalam bidang fisika umumnya dinyatakan dalam bentuk persamaan diferensial taklinear. Karena adanya faktor taklinear inilah yang membuat persamaan diferensial tersebut sulit diselesaikan secara eksak. Salah satu metode untuk mendekati penyelesaian model persamaan diferensial taklinear adalah metode homotopi optimal. Dalam metode homotopi optimal didefinisikan fungsi homotopi yang bergantung pada suatu parameter h. Berdasarkan masalah peminimuman, akan ditentukan nilai h agar galat yang dihasilkan oleh pendekatan penyelesaian minimum. Aplikasi metode ini pada masalah aliran fluida Blasius, didefinisikan fungsi homotopi yang bergantung pada 3 parameter (h_0,h_1,h_2). Dalam penelitian ini diperoleh bahwa optimasi terhadap h_0 dan h_1 memberikan penyelesaian dengan daerah kekonvergenan yang lebih luas dibandingkan jika menggunakan optimasi terhadap h_0, optimasi terhadap h_1, dan optimasi terhadap h_0,h_1,h_2. Mathematical models in the field of physics are generally expressed in the form of nonlinear differential equations. Because of the nonlinear factor, the differential equation is difficult to be solved exactly. One of the methods to approximate the solution of a nonlinear differential equation model is the optimal homotopy method. In the optimal homotopy method, a homotopy function dependent on a parameter h is defined. Based on the minimization problem, the value of h will be determined so that the error produced by the minimum solution approach is minimized. The application of this method to the Blasius fluid flow problem is defined a homotopy function that depends on 3 parameters (h_0,h_1,h_2). In this study, it was chosen that optimization of h_0 and h_1 provides a solution with a wider convergence region compared to using optimization of h_0, optimization of h_0, and optimization of h_0,h_1,h_2