View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Sentimen Masyarakat terhadap Fatwa MUI dan Boikot Produk Terafiliasi Israel di X menggunakan IndoBERT dan Topic Modelling

      Thumbnail
      View/Open
      Cover (2.644Mb)
      Fulltext (9.981Mb)
      Lampiran (1.461Mb)
      Date
      2024
      Author
      Irmawan, Muhammad Daffa Fakhi
      Mushthofa
      Agmalaro, Muhammad Asyhar
      Metadata
      Show full item record
      Abstract
      Konflik antara Israel dan Palestina telah memicu berbagai respons di seluruh dunia, termasuk di Indonesia. Majelis Ulama Indonesia (MUI) mengeluarkan fatwa yang mendukung perjuangan Palestina dan menganjurkan untuk memboikot produk terafiliasi Israel, yang memunculkan beragam tanggapan masyarakat. Analisis sentimen bertujuan untuk memberikan gambaran terhadap pola perbincangan masyarakat menggunakan IndoBERT, dan melakukan pemodelan topik menggunakan metode Latent Dirichlet Allocation. Penelitian ini mengklasifikasikan sentimen masyarakat ke dalam kategori positif, netral, dan negatif serta mengidentifikasi topik utama yang dibahas terkait fatwa tersebut. Tahapan penelitian meliputi pengumpulan data, praproses, pelabelan, pembagian data, pemodelan, evaluasi, dan pemodelan topik. Hasil penelitian menunjukkan bahwa model IndoBERT mampu mengklasifikasikan sentimen dengan akurasi 94%, sementara metode Latent Dirichlet Allocation berhasil mengidentifikasi topik utama dalam diskusi masyarakat untuk setiap kategori sentimen.
       
      The ongoing conflict between Israel and Palestine has prompted diverse responses globally, including in Indonesia. The Indonesian Ulema Council (MUI) issued a fatwa supporting the Palestinian struggle and advocating for the boycott of products affiliated with Israel, which has elicited various reactions within the public. Sentiment analysis aims to provide an overview of public discourse patterns using IndoBERT and modelling the topic using the Latent Dirichlet Allocation method. This study classifies public sentiment into positive, neutral, and negative categories and identifies the primary topics discussed in relation to the fatwa. The research process includes data collection, preprocessing, labeling, data splitting, modeling, evaluation, and topic modeling. The results indicate that the IndoBERT model is capable of classifying sentiment with an accuracy rate of 94%, while the Latent Dirichlet Allocation method successfully identifies the main topics in public discourse for each sentiment category.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/160718
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository