Show simple item record

dc.contributor.advisorBukhari, Fahren
dc.contributor.advisorMayyani, Hidayatul
dc.contributor.authorTAZKIA, AVINA
dc.date.accessioned2025-01-11T14:24:35Z
dc.date.available2025-01-11T14:24:35Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/160665
dc.description.abstractHarga beras di Indonesia merupakan indikator penting stabilitas ekonomi dan kesejahteraan masyarakat, sehingga fluktuasinya dapat menyebabkan ketidakpastian. Penelitian ini membandingkan kinerja model Autoregressive Integrated Moving Average (ARIMA) dan k-Nearest Neighbor (KNN) dalam meramalkan harga beras di Indonesia menggunakan data bulanan periode Januari 2010 hingga Maret 2024. Data dibagi menjadi 80% training dan 20% testing. Model ARIMA(1,1,0) dipilih sebagai model terbaik berdasarkan uji formal dan kriteria AIC, sementara kombinasi parameter KNN terbaik adalah k = 8, algoritma ‘auto’, metrik Manhattan, dan pembobotan ‘uniform’. Hasil menunjukkan ARIMA memiliki akurasi lebih baik dengan nilai MAPE dan RMSE lebih rendah, serta lebih efektif dalam menangkap tren jangka panjang meskipun kurang responsif terhadap fluktuasi mendadak. KNN lebih fleksibel dalam mengenali pola data, namun kurang stabil dalam menghadapi volatilitas tinggi. Oleh karena itu, ARIMA lebih cocok untuk data linear dan stabil, sedangkan KNN lebih sesuai untuk data yang lebih kompleks.
dc.description.abstractIndonesian rice prices are an essential indicator of economic stability and public welfare, so their fluctuations can cause uncertainty. This study compares the performance of the Autoregressive Integrated Moving Average (ARIMA) and k-Nearest Neighbor (KNN) models in forecasting rice prices in Indonesia using monthly data from January 2010 to March 2024. The data is divided into 80% training and 20% testing. The ARIMA(1,1,0) model was selected as the best model based on the formal test and AIC criteria, while the best KNN parameter combination was k = 8, the 'auto' algorithm, Manhattan metric, and 'uniform' weighting. This study reveals that ARIMA outperforms KNN, yielding lower MAPE and RMSE values, and effectively capturing long-term trends. However, ARIMA is less responsive to sudden fluctuations. Conversely, KNN excels in recognizing complex patterns but struggles with high volatility. Thus, ARIMA suits linear and stable data, while KNN is better suited for complex data.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titlePerbandingan Kinerja Model ARIMA dan k-Nearest Neighbor dalam Peramalan Harga Beras Indonesiaid
dc.title.alternativeComparative Study of ARIMA and k-Nearest Neighbor Models in Forecasting Indonesian Rice Prices
dc.typeSkripsi
dc.subject.keywordARIMAid
dc.subject.keywordforecastingid
dc.subject.keywordKNNid
dc.subject.keywordmodel comparisonid
dc.subject.keywordrice priceid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record