Analisis Kestabilan Model Matematika SEIR pada Penyakit Covid-19
Abstract
Penelitian ini menggunakan model matematika SEIR (Susceptible-Exposed
Infected-Recovered) untuk menganalisis dinamika penyebaran Covid-19.
Penelitian ini mencakup penentuan titik tetap bebas penyakit dan endemik, analisis
kestabilan menggunakan kriteria Routh-Hurwitz, serta perhitungan bilangan
reproduksi dasar (R0) melalui metode matriks next generation. Simulasi numerik
digunakan untuk melihat bagaimana variabel seperti laju transmisi, vaksinasi, dan
laju pemulihan memengaruhi dinamika penyebaran penyakit. Hasil analisis
menunjukkan bahwa R0 < 1 menunjukkan bahwa penyakit akan hilang, sedangkan
R0 >1 menunjukkan bahwa kondisi menjadi endemik. Simulasi menunjukkan
bahwa pengurangan kontak, peningkatan laju vaksinasi, dan peningkatan
pengobatan secara signifikan dapat mengurangi nilai R0, mengurangi jumlah kasus
infeksi, dan mempercepat waktu pengendalian wabah This study uses the SEIR (Susceptible-Exposed-Infected-Recovered)
mathematical model to analyze the dynamics of the spread of Covid-19. The study
includes the determination of disease-free and endemic fixed points, stability
analysis using the Routh-Hurwitz criterion, and calculation of the basic
reproduction number (R0) through the next generation matrix method. Numerical
simulations are used to see how variables such as transmission rate, vaccination,
and recovery rate affect the dynamics of disease spread. The analysis shows that
R0 <1 indicates that the disease will disappear, while R0 > 1 indicates that the
condition becomes endemic. Simulations show that reducing contacts, increasing
the vaccination rate, and increasing treatment can significantly reduce the R0 value,
reduce the number of infectious cases, and speed up the outbreak control time.
Collections
- UT - Mathematics [1487]
