View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Kestabilan Model Matematika SEIR pada Penyakit Covid-19

      Thumbnail
      View/Open
      Cover (482.4Kb)
      Fulltext (1.373Mb)
      Lampiran (633.6Kb)
      Date
      2025
      Author
      Firdaus, Alfath Fathan
      Sianturi, Paian
      Kusnanto, Ali
      Metadata
      Show full item record
      Abstract
      Penelitian ini menggunakan model matematika SEIR (Susceptible-Exposed Infected-Recovered) untuk menganalisis dinamika penyebaran Covid-19. Penelitian ini mencakup penentuan titik tetap bebas penyakit dan endemik, analisis kestabilan menggunakan kriteria Routh-Hurwitz, serta perhitungan bilangan reproduksi dasar (R0) melalui metode matriks next generation. Simulasi numerik digunakan untuk melihat bagaimana variabel seperti laju transmisi, vaksinasi, dan laju pemulihan memengaruhi dinamika penyebaran penyakit. Hasil analisis menunjukkan bahwa R0 < 1 menunjukkan bahwa penyakit akan hilang, sedangkan R0 >1 menunjukkan bahwa kondisi menjadi endemik. Simulasi menunjukkan bahwa pengurangan kontak, peningkatan laju vaksinasi, dan peningkatan pengobatan secara signifikan dapat mengurangi nilai R0, mengurangi jumlah kasus infeksi, dan mempercepat waktu pengendalian wabah
       
      This study uses the SEIR (Susceptible-Exposed-Infected-Recovered) mathematical model to analyze the dynamics of the spread of Covid-19. The study includes the determination of disease-free and endemic fixed points, stability analysis using the Routh-Hurwitz criterion, and calculation of the basic reproduction number (R0) through the next generation matrix method. Numerical simulations are used to see how variables such as transmission rate, vaccination, and recovery rate affect the dynamics of disease spread. The analysis shows that R0 <1 indicates that the disease will disappear, while R0 > 1 indicates that the condition becomes endemic. Simulations show that reducing contacts, increasing the vaccination rate, and increasing treatment can significantly reduce the R0 value, reduce the number of infectious cases, and speed up the outbreak control time.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/160629
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository