View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Bifurkasi Hopf dalam Model Interaksi antara Tanaman, Hama, dan Predator

      Thumbnail
      View/Open
      Cover (516.7Kb)
      Fulltext (2.734Mb)
      Lampiran (1.380Mb)
      Date
      2025
      Author
      Triwulandari, Raden Roro Carissa
      Kusnanto, Ali
      Sianturi, Paian
      Metadata
      Show full item record
      Abstract
      Dalam penelitian ini, dilakukan analisis terhadap model interaksi antara tanaman, hama, dan predator dengan memperhatikan perubahan tiga parameter utama, yaitu tingkat panen tanaman, tingkat interaksi antara tanaman dan hama, serta laju kematian alami predator. Tujuan penelitian ini adalah untuk mengetahui kapan dan bagaimana bifurkasi Hopf dapat terjadi. Langkah-langkah yang dilakukan yaitu mereformulasi model, penentuan titik tetap dan analisis kestabilannya, serta dilakukannya simulasi numerik menggunakan software Wolfram Mathematica 12.3. Hasil penelitian mengidentifikasi empat titik tetap yang kestabilannya bergantung pada nilai parameter yang digunakan. Bifurkasi Hopf ditemukan terjadi pada titik tetap keempat dengan transisi kestabilan dari spiral stabil menjadi spiral tak stabil pada parameter tertentu dan memunculkan limit cycle.
       
      In this study, the interaction dynamics between crops, pests, and predators were analyzed, focusing on the impact of changes in the harvest rate, the interaction rate between crops and pests, and the natural mortality rate of predators. The aim of this research is to determine when and how Hopf bifurcation occurs. The steps taken include reformulating the model, identifying equilibrium points, analyzing their stability, and performing numerical simulations using Wolfram Mathematica 12.3. The analysis identified four fixed points whose stability depends on the parameter values used. Hopf bifurcation was found to occur at the fourth equilibrium point, marked by a stability transition from a stable spiral to an unstable spiral at specific parameter values, resulting in the emergence of a limit cycle.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/160587
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository