View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Perbandingan Kinerja Model Logistic Regression dan Artificial Neural Network dalam Mendiagnosis Pasien Diabetes

      No Thumbnail [100%x80]
      View/Open
      Cover (296.1Kb)
      Fulltext (1.369Mb)
      Lampiran (202.3Kb)
      Date
      2024
      Author
      Noviyanti, Desi
      Julianto, Mochamad Tito
      Mangku, I Wayan
      Metadata
      Show full item record
      Abstract
      Diabetes melitus merupakan kondisi yang terjadi akibat kekurangan produksi insulin, baik sebagian maupun keseluruhan, yang menyebabkan peningkatan kadar glukosa dalam darah. Mendeteksi diabetes sejak dini sangat penting untuk mencegah berkembangnya komplikasi yang serius. Penelitian ini bertujuan untuk membandingan kinerja model Logistic Regression dan Artificial Neural Network(ANN) dalam mendiagnosis pasien diabetes. Data penelitian terdiri dari 8 variabel bebas dan 1 variabel target. Hasil penelitian menunjukkan bahwa model ANN merupakan model terbaik berdasarkan hasil metrik evaluasi akurasi dan nilai AUC, baik pada data training (akurasi = 81.82% dan AUC = 89.53%) maupun data testing (akurasi = 80.73% dan AUC = 87.53%). Sementara itu, model Logistic Regression merupakan model terbaik berdasarkan kecepatan waktu komputasinya, baik pada data training (0.0010 detik) maupun data testing (0.0003 detik).
       
      Diabetes mellitus is a metabolic disorder characterized by insufficient insulin production, leading to elevated glucose levels in the bloodstream. Early detection of diabetes is crucial to prevent the development of serious complications. This study aims to compare the performance of Logistic Regression and Artificial Neural Network (ANN) models in diagnosing diabetes patients. The dataset consists of eight independent variables and one target variable. The findings reveal that the ANN model outperforms the Logistic Regression model based on accuracy and AUC (Area Under Curve) metrics. The ANN model achieved an accuracy of 81.82% and an AUC of 89.53% on the training data, and an accuracy of 80.73% and an AUC of 87.53% on the testing data. Conversely, the Logistic Regression model excelled in computational speed, with processing times of 0.0010 seconds for the training data and 0.0003 seconds for the testing data.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/160326
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      NoThumbnail