View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Veterinary Medicine and Biomedical Science
      • UT - Animal Disease and Veterinary Health
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Veterinary Medicine and Biomedical Science
      • UT - Animal Disease and Veterinary Health
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pengembangan Identifikasi Otomatis untuk Beberapa Telur Cacing Parasit pada Domba

      Thumbnail
      View/Open
      Cover (1.111Mb)
      Fulltext (1.718Mb)
      Lampiran (771.1Kb)
      Date
      2024
      Author
      Indah, Khoerunnisa Kania
      Arif, Ridi
      Karja, Ni Wayan Kurniani
      Metadata
      Show full item record
      Abstract
      Sistem pendeteksi dini kecacingan pada domba secara cepat, real-time, dan akurat diperlukan untuk mencegah infeksi kecacingan pada domba. Oleh karena itu, penelitian ini bertujuan membuat sistem identifikasi telur parasit cacing multispesies yaitu Strongyle, Moniezia sp., Trichuris sp., dan Paramphistomum sp secara otomatis dengan algoritma YOLO (You Only Look Once). Sistem identifikasi dibuat dengan melakukan pengambilan gambar telur cacing sebagai dataset, melakukan anotasi dataset, pengembangan sistem, dan pengujian sistem algoritma. Pengembangan sistem identifikasi telur cacing dilakukan oleh mitra penelitian yaitu PT. Vox Digital Kreatif. Sistem berhasil mendeteksi multiple spesies cacing namun belum optimal. Kemampuan algoritma yang belum optimal melakukan identifikasi dan kuantifikasi dapat disebabkan jumlah dataset yang sedikit, telur terlalu padat, dan kualitas gambar kurang baik
       
      A fast, real-time, and accurate early detection system for helminthiasis in sheep is needed to prevent helminthiasis infection in sheep. Therefore, this study aims to create an automatic identification system for eggs of multispecies helminth parasites namely Strongyle, Moniezia sp., Trichuris sp., and Paramphistomum sp. using the YOLO (You Only Look Once) algorithm. The identification system is made by taking pictures of worm eggs as datasets, annotating the datasets, developing the system, and testing the algorithm system. The worm egg identification system development was carried out by our research partner, PT Vox Digital Kreatif. The multi-species worm egg identification system successfully detected multiple worm species, albeit suboptimal. The cause of such results can be affected by the small number of datasets, high density of the eggs, and poor image quality.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/160290
      Collections
      • UT - Animal Disease and Veterinary Health [1240]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository