View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Physics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Kinerja Material Sensing Layer Pada Sensor Kelembapan Berbasis Quartz Crystal Microbalance

      Thumbnail
      View/Open
      Cover (944.8Kb)
      Fulltext (2.801Mb)
      Lampiran (683.7Kb)
      Date
      2024
      Author
      Ilhami, Siska
      Syafutra, Heriyanto
      Syamsu, Iqbal
      Metadata
      Show full item record
      Abstract
      Kinerja sensor kelembapan berbasis quartz crystal microbalance (QCM) dapat ditingkatkan dengan mendeposisikan material sensing layer pada permukaannya. Graphene oxide (GO), reduced graphene oxide (rGO) dan carbon nanotubes (CNT) dipilih sebagai material sensing layer karena memiliki luas area sensitif yang besar sehingga memiliki kapasitas adsorpsi yang tinggi. Penelitian ini dilakukan dengan menggunakan teknik drop-casting untuk mendeposisikan material sensing layer. Struktur kristal, morfologi permukaan, luas permukaan spesifik, serta keberadaan gugus fungsi oksigen dari material yang digunakan dianalisis menggunakan x-ray diffraction (XRD), scanning electron microscopy (SEM), brunauer emmett teller (BET) dan fourier transform infrared spectroscopy (FTIR). Hasil penelitian menunjukkan bahwa setiap sensing layer menunjukkan kinerja yang berbeda. Sensor dengan sensing layer GO menunjukkan sensitivitas 91,06 Hz/%RH dengan waktu respons 77 detik dan waktu pemulihan 16 detik, sedangkan sensor dengan sensing layer CNT menunjukkan sensitivitas 11,9 Hz/%RH dengan waktu respons 25 detik dan waktu pemulihan 20 detik. Sementara itu, sensor dengan sensing layer rGO menunjukkan perilaku anti-Sauerbrey.
       
      The performance of quartz crystal microbalance (QCM) based humidity sensor can be improved by depositing a sensing layer material on its surface. Graphene oxide (GO), reduced graphene oxide (rGO) and carbon nanotubes (CNT) were chosen as sensing layer materials because they have a large sensitive area and thus high adsorption capacity. This research was conducted by using drop-casting technique to deposit the sensing layer material. The crystal structure, surface morphology, specific surface area, and presence of oxygen functional groups of the materials used were analyzed using scanning electron microscopy (SEM), brunauer emmett teller (BET) and fourier transform infrared spectroscopy (FTIR). The results showed that each sensing layer showed different performance. The sensor with GO sensing layer showed a sensitivity of 91,06 Hz/%RH with a response time of 77 seconds and a recovery time of 16 seconds, while the sensor with CNT sensing layer showed a sensitivity of 11,9 Hz/%RH with a response time of 25 seconds and a recovery time of 20 seconds. Meanwhile, the sensor with rGO sensing layer shows anti-Sauerbrey behavior.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/160204
      Collections
      • UT - Physics [1230]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository