Hujan Monsun Indonesia: Karakteristik, Variabilitas dan Proyeksi Perubahannya di Masa Depan.
Date
2024Author
Mulsandi, Adi
Koesmaryono, Yonny
Hidayat, Rahmat
Sopaheluwakan, Ardhasena
Faqih, Akhmad
Metadata
Show full item recordAbstract
Monsun secara sederhana didefinisikan sebagai variasi musiman angin dan
curah hujan. Monsun menjadi dasar iklim di wilayah ekuator, di mana setiap variasi
iklim yang terjadi mengacu pada kondisi normal monsun. Monsun memainkan
peran penting dalam berbagai sektor kehidupan manusia, seperti pertanian,
ekonomi, sumber daya air, dan ekosistem. Penelitian sebelumnya menunjukkan
bahwa iklim Indonesia didominasi oleh pola monsunal, yang menjadi fondasi iklim
utama di wilayah ini.
Meskipun penting, pengetahuan tentang aktivitas monsun di Indonesia masih
terbatas, dengan banyak fitur yang belum terungkap. Saat ini, pemantauan hujan
monsun di Indonesia menggunakan Indeks Monsun Australia (AUSMI), yang tidak
akurat dalam menangkap variabilitas hujan monsun Indonesia karena perbedaan
karakteristik regional. Penggunaan AUSMI kurang tepat, dan penelitian ini
bertujuan untuk memberikan pemahaman lebih baik tentang karakteristik dan
variabilitas hujan monsun Indonesia, serta proyeksi perubahan di masa mendatang.
Penelitian ini menganalisis karakteristik hujan monsun Indonesia
menggunakan metode Singular Value Decomposition (SVD) pada variabel curah
hujan, suhu muka laut (SST), dan angin. Hasil analisis mengungkap bahwa wilayah
hujan monsun Indonesia mencakup bagian selatan dan tengah, dengan dua fase
utama: musim hujan (November–April) dan musim kemarau (Mei–Oktober).
Selain itu, hujan monsun Indonesia dipengaruhi oleh dipol meridional SST, anomali
tekanan di Siberia dan Indo-Australia, serta angin baratan di Samudra Hindia.
Untuk memahami lebih dalam karakteristik hujan monsun Indonesia,
penelitian ini mendefinisikan Indeks Monsun Indonesia berdasarkan komponen
angin zonal pada ketinggian 850 hPa, yang berkorelasi erat dengan curah hujan di
wilayah monsun. Indeks ini lebih akurat dalam menangkap variabilitas antar
tahunan curah hujan monsun Indonesia dibandingkan AUSMI.
Variabilitas hujan monsun Indonesia sangat luas, dipengaruhi oleh interaksi
dengan fenomena iklim global seperti El Niño-Southern Oscillation (ENSO),
Indian Ocean Dipole (IOD), Quasi-Biennial Oscillation (QBO), dan Pacific
Decadal Oscillation (PDO). Di antara fenomena tersebut, ENSO paling banyak
dikaji. Sementara itu, QBO belum banyak diteliti meskipun berpotensi
memengaruhi variabilitas musiman hujan monsun Indonesia.
Hasil analisis variabel iklim juga menunjukkan bahwa perubahan iklim telah
berdampak nyata di Indonesia, terutama di sektor pertanian yang sangat rentan
terhadap kekeringan. Penelitian ini mengkaji dampak kekeringan di masa depan
akibat perubahan curah hujan monsun. Meskipun intensitas curah hujan secara
umum tidak berubah signifikan, durasi kekeringan diperkirakan akan meningkat,
dengan rata-rata mencapai 9 bulan di masa depan, baik pada near future (NF: 2025–
2055) maupun far future (FF: 2071–2100). Kekeringan di masa depan cenderung
dimulai pada awal musim kemarau, dengan peningkatan kejadian yang dimulai
sejak bulan Juni di semua skenario The monsoon is simply defined as the seasonal variation of wind and rainfall.
The monsoon serves as the foundation of the climate in equatorial regions, where
all climate variations refer to the normal monsoon conditions. The monsoon plays
a crucial role in various sectors of human life, such as agriculture, economy, water
resources, and ecosystems. Previous studies have shown that Indonesia’s climate is
dominated by the monsoonal pattern, which forms the primary basis of the
country’s climate.
Despite its importance, knowledge about monsoon activity in Indonesia is
still limited, with many features remaining undiscovered. Currently, monsoon
monitoring in Indonesia uses the Australian Summer Monsoon Index (AUSMI),
which is inaccurate in capturing the variability of Indonesia’s monsoon due to its
distinct regional characteristics. The use of AUSMI is less suitable, and this study
aims to provide a better understanding of Indonesia's monsoon rainfall
characteristics, variability, and future projections.
This study analyzes the characteristics of the Indonesian monsoon rainfall
using Singular Value Decomposition (SVD) on variables such as rainfall, sea
surface temperature (SST), and wind. The results reveal that the monsoon region of
Indonesia includes the southern and central parts, with two main phases: the rainy
season (November–April) and the dry season (May–October). Additionally, the
Indonesian monsoon is influenced by the meridional SST dipole, pressure
anomalies in Siberia and Indo-Australia, and westerly winds in the Indian Ocean.
To gain deeper insights into Indonesia's monsoon rainfall characteristics, this
study defines the Indonesian Monsoon Index based on the zonal wind component
at 850 hPa, which is strongly correlated with rainfall in the monsoon region. This
index is more accurate in capturing the interannual variability of Indonesian
monsoon rainfall compared to AUSMI.
The variability of the Indonesian monsoon is extensive, influenced by
interactions with global climate phenomena such as the El Niño-Southern
Oscillation (ENSO), Indian Ocean Dipole (IOD), Quasi-Biennial Oscillation
(QBO), and Pacific Decadal Oscillation (PDO). Among these phenomena, ENSO
has been the most studied, while QBO has received little attention, despite its
potential impact on the seasonal variability of Indonesia’s monsoon.
Climate variable analysis also shows that climate change has had a significant
impact on Indonesia, especially in the agricultural sector, which is highly vulnerable
to drought. This study examines the potential future impact of drought due to
changes in monsoon rainfall. While the overall intensity of rainfall is not expected
to change significantly, the duration of drought is projected to increase, with an
average duration of up to 9 months in the future, both in the near future (NF: 2025–
2055) and the far future (FF: 2071–2100). Future droughts are likely to start in the
early dry season, with an increase in occurrences starting as early as June under all
scenarios.