Perbandingan Peramalan Mata Uang Australia ke Indonesia dengan Metode ARIMA-GARCH Simetris dan Asimetris.
Date
2024Author
Achyara, Farhan Narendra
Silvianti, Pika
Dito, Gerry Alfa
Metadata
Show full item recordAbstract
Analisis deret waktu adalah bagian penting untuk meramalkan dan melihat pergerakan data. Salah satu contoh dari analisis deret waktu adalah nilai tukar mata uang. Volatilitas mata uang dapat memengaruhi stabilitas ekonomi negara termasuk Indonesia dan Australia. Intervensi dari pemerintah dan bank sentral dapat mengendalikan volatilitas tersebut. Penelitian ini menggunakan metode Autoregressive Integrated Moving Average (ARIMA) dan Generalized Autoregressive Conditional Heteroskedasticity (GARCH) simetris dan asimetris dalam melihat dan memprediksi pergerakan mata uang. Tujuan dari penelitian ini adalah meramalkan dan mencari model terbaik untuk peramalan nilai tukar Rupiah dengan Dolar Australia untuk periode 2 Januari 2019 sampai 19 Maret 2024. Hasil dari evaluasi data deret waktu menunjukkan model terbaik yaitu ARIMA(3,1,2)- GARCH(0,5) dengan nilai Mean Average Percentage Error (MAPE) dan Root Mean Squared Error (RMSE) masing-masing sebesar 1,075% dan 133,671 serta parameter yang tidak signifikan paling sedikit. Selanjutnya, hasil peramalan dari tanggal 20 Maret 2024 sampai 16 April 2024 menunjukkan peramalan cenderung stagnan dan selang prediksi data cenderung stabil meskipun tidak sesuai dengan data asli. Time series methods are part of data analysis to predict data futures and movements. One of example in time series method is currency exchange rates. Its’ volatility can affect the economic stability of many countries including Indonesia and Australia. Intervention from government and central bank can change the outcome of currency’s movement. This research uses Autoregressive Integrated Moving Average (ARIMA) and symmetric and asymmetric Generalized Autoregressive Conditional Heteroskedasticity (GARCH) method in viewing and predicting currency movements. Asymmetric methods generally are better at identifying volatility than symmetric GARCH. The aim of this research is to predict and find the best forecasting model for Indonesian Rupiah with the Australian Dollar exchange rate for the period of January 2nd 2019 to March 19th 2024. The best results is ARIMA(3,2,1)-GARCH(0,5) with Mean Average Percentage Error (MAPE) and Root Mean Square Error (RMSE) value of 1,075% dan 133,671 respectively and also the least parameters that are not significant. Then, we forecast the data from March 20th 2024 to April 16th 2024 with the forecast is stagnated and the prediction interval tend to be stable even though it’s not matched with real data.