Prediksi Dinamika Harga Indeks Saham Menggunakan SVM (Support Vector Machine) Dengan Pendekatan Time Series Moving Avarage.
Date
2024Author
Gladion, Difa Leroy
Hardhienata, Hendradi
Puspita, R. Tony Ibnu Sumaryada Wijaya
Metadata
Show full item recordAbstract
Penelitian ini mengevaluasi prediksi harga indeks saham, khususnya Indeks
Harga Saham Gabungan (IHSG) dan LQ45, menggunakan Support Vector
Machine (SVM) dengan variasi moving average: Simple Moving Average (SMA),
Exponential Moving Average (EMA), Weighted Moving Average (WMA), dan
teknik shifting. Indeks saham mencerminkan pergerakan harga yang dipengaruhi
oleh faktor ekonomi, kebijakan, dan kondisi global. Hasil menunjukkan bahwa
pada prediksi IHSG, model SVM-EMA memiliki akurasi tertinggi sebesar
98.08% dan MAPE terendah sebesar 2.85%, menunjukkan kemampuan dalam
menangkap perubahan harga dengan baik. Pada prediksi LQ45, model SVM WMA mencatat akurasi tertinggi sebesar 96.01%, sedangkan teknik shifting
menunjukkan akurasi terendah untuk IHSG (75.13%) dan LQ45 (85.87%), dengan
MAPE masing-masing sebesar 3.01% dan 3.87%. Hasil ini menegaskan
keunggulan moving average dalam memprediksi harga saham dan pemodelan. This research evaluates the prediction of stock index prices, specifically the
Jakarta Composite Index (IHSG) and LQ45, using Support Vector Machine
(SVM) with variations of moving averages: Simple Moving Average (SMA),
Exponential Moving Average (EMA), Weighted Moving Average (WMA), and
the shifting technique. Stock indices reflect price movements influenced by
economic factors, government policies, and global conditions. The results show
that for IHSG predictions, the SVM-EMA model achieved the highest accuracy of
98.08% and the lowest MAPE of 2.85%, demonstrating its ability to capture
recent price changes effectively. In LQ45 predictions, the SVM-WMA model
recorded the highest accuracy of 96.01%, while the shifting technique showed the
lowest accuracy for both IHSG (75.13%) and LQ45 (85.87%), with MAPE values
of 3.01% and 3.87%, respectively. These findings highlight the superiority of the
moving average approach in stock price prediction and modeling.
Collections
- UT - Physics [1100]