View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Forest Management
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Forest Management
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pengembangan Algoritma Pembelajaran Mesin untuk Deteksi Kopi Robusta Agroforestri dan Monokultur Berbasis Citra Resolusi Tinggi Studi Kasus: Kabupaten Tanggamus

      No Thumbnail [100%x80]
      View/Open
      Cover (394.6Kb)
      Fulltext (3.413Mb)
      Lampiran (428.0Kb)
      Date
      2024
      Author
      Audrey, Alvito
      Jaya, I Nengah Surati
      Metadata
      Show full item record
      Abstract
      Makalah ini membahas pengembangan algoritma mesin pembelajar untuk mendeteksi agroforestri dan monokultur kopi robusta dengan menggunakan citra beresolusi tinggi. Tujuan utama dari penelitian ini adalah untuk membangun algoritma pendeteksian wanatani dan monokultur kopi robusta berdasarkan citra SPOT-7 dengan menggunakan machine learning. Penelitian ini dilakukan di Kabupaten Tanggamus yang merupakan daerah yang sebagian besar menanam kopi robusta dengan produksi pada tahun 2021 sebesar 775,0 ton dan pada tahun 2022 sebesar 14,7% di Lampung. Sumber data utama yang digunakan adalah citra satelit SPOT-7, titik-titik plot sampel, layer batas kabupaten, batas kecamatan, aliran sungai, jaringan jalan, pusat pemukiman, ketinggian, dan tutupan lahan. Hasil penelitian menunjukkan bahwa algoritma pohon keputusan dapat mendeteksi agroforestri kopi dan kopi monokultur dengan akurasi keseluruhan 97,0% dan akurasi kappa 96,7%.
       
      This paper examines the development of a machine learning algorithm for detecting robusta coffee agroforestry and monoculture using high-resolution images. The main objective of this research was to build a detection algorithm of robusta coffee agroforestry and monoculture based on SPOT-7 images using machine learning. The main data sources used were SPOT-7 satellite images, sample plot points, layers of district boundaries, sub-district boundaries, river flows, road networks, residential centers, elevation, and land cover. The research was conducted in Tanggamus Regency, where the robusta coffee was predominantly planted, having production in 2021 at 775,0 tons and in 2022 at 14.7% in Lampung. The results of the research found that the decision tree algorithm could detect coffee agroforestry and monoculture coffee with overall accuracy of 97,0% and kappa accuracy of 96,7%
       
      URI
      http://repository.ipb.ac.id/handle/123456789/159080
      Collections
      • UT - Forest Management [3097]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      NoThumbnail