Estimasi Stok Karbon Atas dalam Sebaran Lamun di Pulau Pari, Kepulauan Seribu Menggunakan Citra Satelit Sentinel-2A
Date
2024Author
Afrilia, Safina Putri
Gaol, Jonson Lumban
Susilo, Setyo Budi
Metadata
Show full item recordAbstract
Padang lamun Indonesia menyimpan sekitar 2% dari karbon laut dunia,
namun penelitian mengenai stok karbon lamun khususnya di Pulau Pari masih
terbatas. Penelitian ini bertujuan mengkaji tentang estimasi stok karbon atas pada
padang lamun di Pulau Pari dengan memanfaatkan data penginderaan jauh. Data
yang digunakan adalah data citra satelit Sentinel-2A dan data survei lapang.
Pengolahan data dimulai dari pre-processing citra hingga klasifikasi habitat bentik.
Klasifikasi habitat bentik dilakukan menggunakan algoritma Maximum Likelihood.
Uji akurasi klasifikasi dilakukan dengan Confusion Matrix. Pembagian sebaran
lamun berdasarkan kerapatan tutupan dilakukan menggunakan algoritma NDVI.
Biomassa atas lamun Enhalus acoroides dan Thalassia hemprichii dihitung
dengan mengalikan berat kering sampel lamun dengan kerapatan lamun.
Kandungan karbon pada biomassa atas lamun dihitung menggunakan faktor
konversi karbon 0,336 dari biomassa. Hasil klasifikasi habitat bentik
menunjukkan luasan lamun yang terdeteksi adalah 64,94 ha. Uji akurasi
klasifikasi menghasilkan nilai overall accuracy 88,10% dan koefisien kappa 0,85.
Kandungan karbon dalam biomassa atas lamun E. acoroides adalah sebesar 0-
13,202 gC/m2 dan T. hemprichii sebesar 0-7,341 gC/m2. Total luasan lamun per
kategori kerapatan tutupan NDVI yaitu 62,03 ha, dan total cadangan karbon dari
tiga kelas kerapatan lamun yaitu 116,66 tonC. Total cadangan karbon ekosistem
lamun di Pulau Pari berkisar 116,66 hingga 122,12 tonC. Seagrass meadows in Indonesia represent approximately 2% of the global
blue carbon reserve. Nevertheless, research on seagrass carbon stocks, particularly
in the Pari Island region, remains scarce. The objective of this study is to assess
the estimation of aboveground carbon stocks in seagrass meadows on Pari Island
by utilizing remote sensing data. The data employed in this study are derived from
satellite imagery obtained from the Sentinel-2A satellite and complemented by
field survey data. The data processing stage commences with the pre-processing
of the image and culminates in the classification of the benthic habitat. Benthic
habitat classification was conducted using the Maximum Likelihood algorithm. A
Confusion Matrix was employed to assess the accuracy of the classification. The
classification of seagrass beds based on the density was done using the NDVI
algorithm. The aboveground biomass of Enhalus acoroides and Thalassia
hemprichii was calculated by multiplying the dry weight of seagrass samples by
the seagrass density. The carbon content of the aboveground biomass of seagrass
was calculated using a carbon conversion factor of 0,336. The results of the
benthic habitat classification indicated that the area of seagrass detected was 64,94
hectares. The classification accuracy test yielded an overall accuracy value of
88,10% and a kappa coefficient of 0,85. The carbon content of the aboveground
biomass of E. acoroides was found to be between 0 and 13,202 gC/m2, while that
of T. hemprichii ranged between 0 and 7,341 gC/m2. The total seagrass area per
NDVI density category was 62,03 ha, and the total carbon stock of the three
seagrass density classes was 116,66 tonsC. The total carbon stock of seagrass
ecosystem in Pari Island ranged from 116,66 to 122,12 tonsC.
