Rancang Bangun Alat Pendeteksi Gejala Awal Gangguan Mental
Abstract
Penyakit mental, termasuk depresi dan kecemasan, merupakan masalah
kesehatan global yang serius, terutama di kalangan mahasiswa yang rentan terhadap
stres akibat tekanan akademik dan tuntutan kehidupan. Jika tidak ditangani, stres
dapat berkembang menjadi masalah yang lebih parah, mempengaruhi kesehatan
fisik, hubungan sosial, dan kinerja akademik. Penelitian ini bertujuan untuk
mengembangkan alat pendeteksi gejala awal gangguan mental, dengan fokus pada
pengujian alat yang mendeteksi tingkat stres pada mahasiswa. Alat ini akan
mengukur tingkat stres, mulai dari normal hingga berat, menggunakan sensor dan
kuesioner Kessler Psychological Distress Scale (K10). Data yang dikumpulkan dari
mahasiswa Sekolah Vokasi IPB dianalisis menggunakan logika fuzzy untuk
menentukan tingkat stres, yang kemudian dibandingkan dengan hasil kuesioner
K10. Alat ini dibangun dengan memanfaatkan ESP32, sensor MAX30102, sensor
GSR (Galvanic Skin Response), serta menggunakan bahasa pemrograman
Javascript dan framework NodeJS dan ReactJS. Alat yang dikembangkan ini
diharapkan dapat menjadi solusi efektif dalam mendeteksi dan mencegah
peningkatan stres yang tidak tertangani pada mahasiswa, sehingga dapat membantu
menjaga kesehatan mental mereka. Mental illness, including depression and anxiety, is a serious global health problem,
especially among university students who are vulnerable to stress from academic
pressures and life demands. If left untreated, stress can develop into more severe
problems, affecting physical health, social relationships, and academic performance.
This research aims to develop a tool for detecting early symptoms of mental
disorders, with a focus on testing a tool that detects stress levels in university
students. The tool will measure stress levels, ranging from normal to severe, using
sensors and the Kessler Psychological Distress Scale (K10) questionnaire. The data
collected from IPB Vocational School students is analyzed using fuzzy logic to
determine the stress level, which is then compared with the results of the K10
7questionnaire. This tool was built by utilizing ESP32, MAX30102 sensor, GSR
(Galvanic Skin Response) sensor, and using Javascript programming language and
NodeJS and ReactJS frameworks. The developed tool is expected to be an effective
solution in detecting and preventing an increase in unmanageable stress in college
students, so that it can help maintain their mental health. This research is expected
to help in early detection and treatment of stress disorders in students.