View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Rancang Bangun Alat Pendeteksi Gejala Awal Gangguan Mental

      Thumbnail
      View/Open
      Cover (3.245Mb)
      Fulltext (5.549Mb)
      Lampiran (2.214Mb)
      Date
      2024
      Author
      Wijaya, Seneng Ari
      Sukoco, Heru
      Metadata
      Show full item record
      Abstract
      Penyakit mental, termasuk depresi dan kecemasan, merupakan masalah kesehatan global yang serius, terutama di kalangan mahasiswa yang rentan terhadap stres akibat tekanan akademik dan tuntutan kehidupan. Jika tidak ditangani, stres dapat berkembang menjadi masalah yang lebih parah, mempengaruhi kesehatan fisik, hubungan sosial, dan kinerja akademik. Penelitian ini bertujuan untuk mengembangkan alat pendeteksi gejala awal gangguan mental, dengan fokus pada pengujian alat yang mendeteksi tingkat stres pada mahasiswa. Alat ini akan mengukur tingkat stres, mulai dari normal hingga berat, menggunakan sensor dan kuesioner Kessler Psychological Distress Scale (K10). Data yang dikumpulkan dari mahasiswa Sekolah Vokasi IPB dianalisis menggunakan logika fuzzy untuk menentukan tingkat stres, yang kemudian dibandingkan dengan hasil kuesioner K10. Alat ini dibangun dengan memanfaatkan ESP32, sensor MAX30102, sensor GSR (Galvanic Skin Response), serta menggunakan bahasa pemrograman Javascript dan framework NodeJS dan ReactJS. Alat yang dikembangkan ini diharapkan dapat menjadi solusi efektif dalam mendeteksi dan mencegah peningkatan stres yang tidak tertangani pada mahasiswa, sehingga dapat membantu menjaga kesehatan mental mereka.
       
      Mental illness, including depression and anxiety, is a serious global health problem, especially among university students who are vulnerable to stress from academic pressures and life demands. If left untreated, stress can develop into more severe problems, affecting physical health, social relationships, and academic performance. This research aims to develop a tool for detecting early symptoms of mental disorders, with a focus on testing a tool that detects stress levels in university students. The tool will measure stress levels, ranging from normal to severe, using sensors and the Kessler Psychological Distress Scale (K10) questionnaire. The data collected from IPB Vocational School students is analyzed using fuzzy logic to determine the stress level, which is then compared with the results of the K10 7questionnaire. This tool was built by utilizing ESP32, MAX30102 sensor, GSR (Galvanic Skin Response) sensor, and using Javascript programming language and NodeJS and ReactJS frameworks. The developed tool is expected to be an effective solution in detecting and preventing an increase in unmanageable stress in college students, so that it can help maintain their mental health. This research is expected to help in early detection and treatment of stress disorders in students.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/158421
      Collections
      • UT - Computer Engineering Tehcnology [172]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository