View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Fisheries and Marine Science
      • UT - Marine Science And Technology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Fisheries and Marine Science
      • UT - Marine Science And Technology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pemetaan Luasan dan Kerapatan Mangrove di Desa Mundupesisir, Kabupaten Cirebon, Jawa Barat

      Thumbnail
      View/Open
      Cover (2.531Mb)
      Fulltext (3.599Mb)
      Lampiran (2.903Mb)
      Date
      2024
      Author
      Azzachra, Syafira
      Arhatin, Risti Endriani
      Gaol, Jonson Lumban
      Metadata
      Show full item record
      Abstract
      Pesisir Kabupaten Cirebon memiliki potensi sumberdaya pesisir seperti ekosistem mangrove, namun kawasan Mangrove di Kabupaten Cirebon diindikasikan telah mengalami kerusakan. Pemantauan mangrove dapat dilakukan melalui teknologi penginderaan jauh menggunakan citra Sentinel-2A. Penelitian ini bertujuan memetakan mangrove dengan membandingkan antara kedua algoritma klasifikasi yaitu Maximum Likelihood (MLH) dan Support Vector Machine (SVM) dengan berbasis piksel. Hasil klasifikasi mangrove dengan algoritma MLH sebesar 13,22 ha, sedangkan untuk algoritma SVM luasnya 9,65 ha. Akurasi yang dihasilkan oleh algoritma MLH dan SVM secara berturut-turut adalah 89,29% dan 91,67%. Luasan sebaran kerapatan mangrove di Desa Mundupesisir, Kabupaten Cirebon dominan oleh kelas rapat dengan luas 9,62 ha menggunakan algoritma SVM. Terdapat korelasi kuat antara tutupan kanopi mangrove dengan nilai NDVI. Sebesar 62,03% variabilitas nilai NDVI dijelaskan oleh persentase tutupan kanopi, sementara sisanya dipengaruhi oleh faktor-faktor lainnya.
       
      Cirebon Regency had coastal resources potential with the presence of mangrove ecosystem, however the mangrove area in Cirebon Regency was reportedly experienced damage. Mangrove monitoring can be done through remote sensing technology using Sentinel-2A imagery. This research aimed to map mangroves by comparing two classification algorithms, namely Maximum Likelihood (MLH) and pixel-based Support Vector Machine (SVM). The mangrove classification results using the MLH algorithm was 13.22 ha, while for the SVM algorithm the area was 9.65 ha. The accuracy produced by the MLH and SVM algorithms were 89.29% and 91.67% respectively. The distribution area of mangrove density in Mundupesisir Village, Cirebon Regency was dominant in the dense class with an area of 9.62 ha using the SVM algorithm. There was a strong correlation between mangrove canopy cover and NDVI values. 62.03% of the variability in NDVI values was explained by the percentage of canopy cover, while the rest influenced by other factors.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/158361
      Collections
      • UT - Marine Science And Technology [2093]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository