dc.contributor.advisor | Rochmah, Hidayati Fatchur | |
dc.contributor.advisor | Manijo | |
dc.contributor.author | Hawari, Muhamad Zahran | |
dc.date.accessioned | 2024-08-16T04:39:02Z | |
dc.date.available | 2024-08-16T04:39:02Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/157615 | |
dc.description.abstract | Kelapa sawit adalah sektor perkebunan unggulan di Indonesia. Pemantauan perkebunan skala besar memerlukan metode khusus untuk pengumpulan dan analisis data. Pengamatan luas perkebunan telah lama menggunakan data penginderaan jauh. Penelitian ini fokus pada perkiraan nutrisi daun dan identifikasi dampak penyakit tanaman, terutama penyakit busuk pangkal batang (BPB) yang disebabkan oleh cendawan Ganoderma boninense. Data multispektral Sentinel-2 yang tersedia, dimanfaatkan untuk mengidentifikasi gejala awal BPB. Analisis dilakukan dengan menggunakan pendekatan machine learning, yaitu random forest (RF), peran indeks vegetasi, perbandingan produksi, perbandingan Sentinel dan GPS. Hasil model RF yang sudah disetel, diperoleh akurasi di blok OF 02 mencapai 93,90% dan di blok OF 05 mencapai 92,87%, menggunakan lima target berbeda: empat tingkat keparahan dan pohon sehat. Penelitian ini juga menyimpulkan bahwa data tambahan seperti indeks vegetasi dapat membedakan tingkat keparahan penyakit meskipun tidak sepenuhnya responsif. Penggunaan GPS lebih akurat dalam input data dibanding dengan sentinel jika skala kecil. Dampak G. boninense pada blok terserang memiliki penurunan produktivitas kelapa sawit. | |
dc.description.abstract | Oil palm is the leading plantation sector in Indonesia. Monitoring large-scale plantations requires specialized methods for data collection and analysis. Plantation area observations have long used remote sensing data. This research focuses on estimating leaf nutrition and identifying the impact of plant diseases, especially stem base rot (SBR) caused by the fungus Ganoderma boninense. Available Sentinel-2 multispectral data were utilized to identify early symptoms of SBR. The analysis was conducted using a machine learning approach, namely random forest (RF), the role of vegetation index, production comparison, Sentinel and GPS comparison. The results of the tuned RF model obtained an accuracy of 93.90% in OF 02 block and 92.87% in OF 05 block, using five different targets: four severity levels and healthy trees. The study also concluded that additional data such as vegetation index can differentiate disease severity although it is not fully responsive. Impact of G. boninense on infested blocks has reduced oil palm productivity. | |
dc.description.sponsorship | | |
dc.language.iso | id | |
dc.publisher | IPB University | id |
dc.title | Serangan Penyakit Busuk Pangkal Batang Kelapa Sawit (Elaeis guineensis Jacq.) Menggunakan Sentinel-2 di PT Sari Aditya Loka 1 | id |
dc.title.alternative | Study of Stem Base Rot Disease Attack of Oil Palm (Elaeis guineensis Jacq.) Using Sentinel-2 at PT Sari Aditya Loka I | |
dc.type | Tugas Akhir | |
dc.subject.keyword | ganoderma boninense | id |
dc.subject.keyword | NDVI | id |
dc.subject.keyword | random forest | id |
dc.subject.keyword | GNDVI | id |