View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Model Klasifikasi Citra Penyakit Mulut dan Kuku pada Sapi Menggunakan Convolutional Neural Network

      Thumbnail
      View/Open
      Cover (1.210Mb)
      Fulltext (910.1Kb)
      Date
      2024
      Author
      Dewi, Kartika
      Sitanggang, Imas Sukaesih
      Hasibuan, Lailan Sahrina
      Metadata
      Show full item record
      Abstract
      Penyakit Mulut dan Kuku (PMK) pada sapi merupakan ancaman serius bagi industri peternakan di Indonesia yang dapat mempengaruhi kesehatan dan produktivitas ternak. Penelitian ini bertujuan mengembangkan aplikasi sederhana berbasis website untuk klasifikasi citra sapi sehat dan terinfeksi PMK menggunakan CNN dengan arsitektur VGG-16 dan MobileNet-V2. Dataset yang digunakan terdiri dari 197 citra, yaitu citra kelas sehat dan pmk. Proses penelitian meliputi pengumpulan dataset, pra-proses data, pembuatan model CNN, hyperparameter tuning, evaluasi model, dan implementasi sistem berbasis website. Model terbaik untuk arsitektur VGG-16 menggunakan optimizer Adam, learning rate 0,01, dan epoch 50, mencapai akurasi training 0,941, akurasi validasi 0,937, dan akurasi testing 0,905 dengan precision 0,846, recall 1,000, dan F1-score 0,917. Untuk MobileNet-V2, konfigurasi terbaik menggunakan optimizer Adam, learning rate 0,001, dan epoch 100, memberikan akurasi model pada training 0,988, akurasi model pada validasi 0,947, dan akurasi model pada testing 0,952 dengan precision 1,000, recall 0,910, dan F1-score 0,952. Penelitian ini telah berhasil membangun aplikasi sederhana berbasis web untuk klasifikasi citra sapi sehat dan PMK menggunakan framework Flask. Aplikasi ini bekerja berdasarkan sistem voting dari dua model, yaitu VGG-16 dan MobileNet-V2 yang memberikan hasil identifikasi yang sama jika kedua model menghasilkan output yang sama.
       
      Foot and Mouth Disease (FMD) in cow is a serious threat to the livestock industry in Indonesia that can affect the health and productivity of livestock. This research aims to develop a simple web-based application for image classification of healthy and FMD-infected cow using CNN with VGG-16 architecture and MobileNet-V2. The dataset used consists of 197 images, namely healthy and FMD class images. The research process includes dataset collection, data pre-processing, CNN model building, hyperparameter tuning, model evaluation, and website-based system implementation. The best model for VGG-16 architecture using Adam optimizer, learning rate 0.01, and epoch 50, achieved training accuracy 0.941, validation accuracy 0.937, and testing accuracy 0.905 with precision 0.846, recall 1.000, and F1-score 0.917. For MobileNet-V2, the best configuration uses Adam optimizer, learning rate 0.001, and epoch 100, giving model accuracy on training 0.988, model accuracy on validation 0.947, and model accuracy on testing 0.952 with precision 1.000, recall 0.910, and F1-score 0.952. This research has successfully built a simple web-based application for the classification of healthy and FMD cow images using the Flask framework. This application works based on a voting system of two models, namely VGG-16 and MobileNet-V2 which gives the same identification result if both models produce the same output.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/156707
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository