View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Software Engineering Technology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Software Engineering Technology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penerapan K-Means untuk Clustering Data Working Hour pada Bagian Welding Perusahaan Manufaktur

      No Thumbnail [100%x80]
      View/Open
      Cover (422.5Kb)
      Fulltext (866.9Kb)
      Lampiran (1.251Mb)
      Date
      2024
      Author
      JUHENDRA, GANDI
      Aziezah, Nur
      Metadata
      Show full item record
      Abstract
      Welding merupakan proses menyatukan bagian atas dan bawah bodi mobil dengan ribuan jenis pengelasan. Proses welding di PT XYZ memiliki peran penting dalam produksi mobil, dengan dua bagian utama yaitu Welding 1 dan Welding 2. Penelitian ini bertujuan untuk menganalisis working hour dan tingkat produksi menggunakan algoritma K-Means Clustering. Data working hour dari April hingga Desember 2023 dikelompokkan menjadi tiga cluster: working hour rendah (kurang dari 390 menit), working hour sedang (390-560 menit), dan working hour tinggi (lebih dari 560 menit). Hasil analisis menunjukkan bahwa produk dari Welding 1 (mobil A, B, dan C) memiliki permintaan yang lebih tinggi dibandingkan produk dari Welding 2 (mobil D, E, F, dan G). Rata-rata produksi harian di Welding 1 adalah 241 hingga 264 mobil, sementara di Welding 2 adalah 187 hingga 247 mobil. Berdasarkan temuan ini, disarankan agar PT XYZ meningkatkan strategi pemasaran dan efisiensi produksi terutama di Welding 2 untuk memenuhi permintaan pasar.
       
      Welding unites the upper and lower parts of a car body with thousands of welding types. The welding process at PT XYZ plays a crucial role in car production, with two main divisions: Welding 1 and Welding 2. This study aims to analyze working hours and production levels using the K-Means Clustering algorithm. Working hour data from April to December 2023 was grouped into three clusters: low working hours (less than 390 minutes), medium working hours (390-560 minutes), and high working hours (more than 560 minutes). The analysis results show that products from Welding 1 (cars A, B, and C) have higher demand compared to products from Welding 2 (cars D, E, F, and G). The average daily production in Welding 1 is 241 to 264 cars, while in Welding 2 it is 187 to 247 cars. Based on these findings, it is recommended that PT XYZ enhance its marketing strategies and production efficiency, particularly in Welding 2, to meet market demand.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/156415
      Collections
      • UT - Software Engineering Technology [89]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      NoThumbnail