View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pengembangan Back-end untuk Implementasi Model Deteksi Kematangan Buah Melon Berjala

      Thumbnail
      View/Open
      Cover (883.6Kb)
      Fulltext (1.159Mb)
      Lampiran (401.7Kb)
      Date
      2024
      Author
      Farghani, Azka Lazuardi
      Wahjuni, Sri
      Giri, Endang Purnama
      Metadata
      Show full item record
      Abstract
      Melon merupakan salah satu buah yang diminati oleh masyarakat Indonesia, tetapi budidaya melon sering mengalami kendala dalam menentukan waktu panen yang tepat. Penelitian sebelumnya telah membuat model machine learning menggunakan ekstraksi ciri GLCM (Gray Level Co-Occured Matrix), fitur jala, dan classifier RF (Random Forest) dan SVM (Support Vector Machine) untuk mendeteksi kematangan melon berjala (Cucumis melo L). Namun, penggunaannya masih terbatas karena membutuhkan pemahaman teknis. Oleh karena itu, penelitian ini dibuat untuk memudahkan pengguna dengan mengimplementasikan model ke dalam aplikasi. Penelitian ini berfokus pada pengembangan back-end untuk mendukung aplikasi. Metode yang digunakan adalah tahapan SDLC (Software Development Life Cycle) model waterfall. Hasil penelitian menunjukkan bahwa program ekstraksi fitur hingga normalisasi berhasil diimplementasikan dan dua endpoint dibuat serta diuji dengan blackbox testing. Endpoint ini memudahkan pengguna mengunggah gambar melon dan menerima prediksi kematangan tanpa memerlukan pemahaman teknis mendalam. Pengujian kinerja menunjukkan total waktu rata-rata untuk mengunggah gambar hingga prediksi selesai adalah 445.2 ms, dengan waktu unggah 208.1 ms, dan waktu prediksi 200 ms.
       
      Melon is one of the fruits favored by the Indonesian community, but melon cultivation often encounters challenges in determining the right harvest time. Previous research has developed a machine learning model using GLCM (Gray Level Co-Occurred Matrix) feature extraction, net features and RF (Random Forest) and SVM (Support Vector Machine) classifiers to detect the ripeness of netted melons (Cucumis melo L). However, its usage is still limited as it requires technical understanding. Therefore, this research aims to facilitate penggunas by implementing the model into an application. This research focuses on Back-end development to support the application. The method used is the waterfall model of the SDLC (Software Development Life Cycle) stages. The results show that the feature extraction and normalization program was successfully implemented, and two endpoints were created and tested with blackbox testing. These endpoints enable penggunas to upload melon images and receive ripeness predictions without requiring deep technical knowledge. Performance testing shows that the total average time for uploading an image to completing the prediction is 445.2 ms, with an upload time of 208.1 ms, and a prediction time of 200 ms.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/155434
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository