Pembuatan Alat Monitoring Kualitas Air pada Akuarium Ikan Arwana Silver Menggunakan Support Vector Machine
Date
2024Author
Fahrezi, Muhamad Diva
Mindara, Gema Parasti
Ariyanto, Dodik
Metadata
Show full item recordAbstract
Arwana (Scleropages Formosus) merupakan ikan hias air tawar yang mencakup beberapa spesies seperti arwana hijau, dan arwana emas. Salah satu faktor permasalahan dalam budi daya ikan arwana yaitu kualitas air. Kualitas air ini merupakan faktor eksternal yang mengakibatkan melambatnya pertumbuhan ikan arwana. Pemantauan kualitas air menjadi salah satu kendala dalam budi daya, karena memerlukan waktu, prosedur, dan beberapa tahapan proses pengukuran untuk mendapatkan nilai parameter kualitas air. Dalam menghadapi permasalahan tersebut penulis merancang alat monitoring kualitas air pada ikan arwana menggunakan teknologi Internet of Things untuk memantau kualitas air secara real-time saat pembudidaya terhubung ke internet, sehingga memungkinkan mereka memantau dan mengelola ikan dengan lebih baik dari jarak jauh. Penelitian ini menggunakan objek ikan arwana silver dengan analisis data algoritma Support Vector Machine (SVM) untuk klasifikasi dalam prediksi kualitas air “baik” atau “kurang baik”. Data yang diperoleh kemudian menemukan model yang baik untuk memprediksi kualitas air, maka hasil yang didapat saat menganalisis menggunakan algoritma tersebut akurasi model sebesar 95,75%. Scleropages formosus arowana is a freshwater ornamental fish that includes several species such as green arowana and golden arowana. One of the problem factors in arowana fish farming is water quality. This water quality is an external factor that results in slowing the growth of arowana fish. Monitoring water quality is one of the obstacles in aquaculture, because it requires time, procedures, and several stages of the measurement process to obtain water quality parameter values. In dealing with these problems, the author designed a water quality monitoring tool for arowana fish using Internet of Things technology to monitor water quality in real-time when farmers are connected to the internet, allowing them to monitor and manage fish better remotely. This research uses silver arowana fish objects with Support Vector Machine (SVM) algorithm data analysis for classification in predicting “good” or “poor” water quality. The data obtained then found a good model to predict water quality, then the results obtained when analyzing using the algorithm model accuracy of 95,75%.