View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Software Engineering Technology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Software Engineering Technology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pembuatan Sistem Penentu Seseorang Mendapatkan Bantuan Menggunakan Klasifikasi Naïve Bayes dengan R

      No Thumbnail [100%x80]
      View/Open
      Cover (775.0Kb)
      Fulltext (1.902Mb)
      Lampiran (343.1Kb)
      Date
      2024
      Author
      Rania, Rahma Fairuz
      Mindara, Gema Parasti
      Metadata
      Show full item record
      Abstract
      Bantuan sosial merupakan salah satu upaya yang dilakukan oleh pemerintah untuk membantu memenuhi kehidupan sehari-hari masyarakat dan meningkatkan kesejahteraan masyarakat di suatu wilayah. Penelitian ini bertujuan untuk membuat Shiny Dashboard untuk mengklasifikasikan seseorang termasuk ke dalam kelompok penerima bantuan sosial atau tidak berdasarkan data input serta untuk mengetahui performa model menggunakan metode Naïve Bayes. Pengklasifikasian seseorang mendapatkan bantuan sosial dengan beberapa faktor seperti usia, status perkawinan, jumlah anak, pendapatan, cara akses ke fasilitas desa, tersedianya MCK, dan ketersediaan air bersih. Uji coba sistem yang dilakukan terhadap model Naïve Bayes yang telah dibangun yaitu data input baru dikirim ke dalam dashboard kemudian diklasifikasi dan otomatis tersimpan pada kolom menerima_bantuan. Akurasi yang diperoleh model adalah sebesar 82% dari hasil perhitungan Confusion Matrix. Dari hasil akurasi tersebut, dapat dikatakan model sudah cukup baik dalam memprediksi dan sistem dashboard dapat diakses melalui shinyapps.io server.
       
      Social Assistance is one of the efforts made by the government to help meet the daily needs of the villagers and improve the welfare of people in a region. This research aims to create a Shiny dashboard to classify whether someone belongs to the group of social assistance recipients based on input data and to evaluate the model's performance using the Naïve Bayes method. Classifying social assistance eligibility based on several factors such as age, marital status, number of children, income, access to public facilities, availability of MCK, and access to clean water. The system testing conducted on the built Naïve Bayes model involves input testing, which is automatically entered into datatables, classified, and stored in the "menerima_bantuan" column. The model achieved an accuracy of 82% based on the Confusion Matrix calculations. From this accuracy result, it can be said that the model is quite good at making predictions and the dashboard system can be accessed through the shinyapps.io server
       
      URI
      http://repository.ipb.ac.id/handle/123456789/155079
      Collections
      • UT - Software Engineering Technology [89]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      NoThumbnail