View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Physics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Monitoring Tingkat Kenyamanan Ayam Broiler Berbasis Pengolahan Citra dan Suhu Menggunakan Teachable Machine

      Thumbnail
      View/Open
      Cover (302.0Kb)
      Fulltext (1.695Mb)
      Lampiran (1.104Mb)
      Date
      2024
      Author
      Putra, Syafadilla Rianno
      Zuhri, Mahfuddin
      Setiawan, Ardian Arif
      Metadata
      Show full item record
      Abstract
      Penelitian ini bertujuan untuk mempelajari respons ayam broiler terhadap perubahan suhu kandang menggunakan Teachable Machine. Data gambar ayam broiler dalam berbagai kondisi suhu dikumpulkan dan diklasifikasikan ke dalam kategori "menyebar" dan "berkumpul." Model machine learning dilatih menggunakan data tersebut untuk mengidentifikasi respons ayam. Evaluasi model dilakukan menggunakan data uji terpisah untuk mengukur keandalan dan keefektifannya. Hasil penelitian menunjukkan bahwa model dapat mengklasifikasikan respons ayam dengan akurasi yang tinggi, memberikan pemahaman lebih mendalam tentang perilaku ayam broiler terhadap perubahan suhu. Temuan ini dapat menjadi dasar untuk pengembangan sistem pengondisian suhu otomatis yang dapat meningkatkan kesejahteraan ayam broiler dan efisiensi produksi peternakan.
       
      This research aims to study the response of broiler chickens to changes in cage temperature using Teachable Machine. Image data of broiler chickens under various temperature conditions were collected and classified into the categories of “spreading” and “gathering.” A machine learning model was trained using the data to identify chicken responses. Model evaluation was conducted using separate test data to measure its reliability and effectiveness. The results show that the model can classify chicken responses with high accuracy, providing a deeper understanding of broiler behavior to temperature changes. These findings can form the basis for the development of an automated temperature conditioning system that can improve broiler welfare and farm production efficiency.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/154240
      Collections
      • UT - Physics [1230]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository