View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Sentimen Komentar Trailer Film Oppenheimer Pada YouTube Menggunakan GRU dan FastText Embedding

      Thumbnail
      View/Open
      Cover (389.3Kb)
      Fulltext (2.170Mb)
      Date
      2024
      Author
      Ansari, Aysuka
      Ardiansyah, Firman
      Haryanto, Toto
      Metadata
      Show full item record
      Abstract
      Pada era internet saat ini, trailer umumnya diunggah melalui platform media sosial seperti YouTube. Melalui platform ini, penonton dapat mengakses serta memberikan sentimen mereka terhadap trailer film dengan mudah. Analisis sentimen terhadap komentar trailer film perlu dilakukan agar diperoleh trailer yang disukai oleh penonton sehingga minat penonton untuk menonton film tersebut dapat meningkat. Penelitian ini bertujuan mengembangkan model Natural Language Processing (NLP) dengan metode word embedding FastText dan arsitektur Gated Recurrent Unit (GRU) untuk analisis kecenderungan sentimen komentar di dalam trailer film Oppenheimer. Berdasarkan hasil pelatihan dan evaluasi diperoleh model TextBlob VADER sebagai model terbaik dengan accuracy bernilai 0,93. Hasil analisis kecenderungan sentimen pada masing-masing trailer film menggunakan model ini menghasilkan pengamatan bahwa trailer 2 lebih diminati penonton dibandingkan trailer 1. Selain itu, penelitian ini juga telah berhasil mengembangkan aplikasi web app sederhana untuk membantu proses analisis sentimen.
       
      In today's internet era, trailers are commonly uploaded on social media platforms like YouTube where viewers can easily access them and express their opinions. Sentiment analysis for a movie trailer is needed in order to create a trailer that is liked by the viewer so that it can increase the viewer’s interest in watching the movie. This research aims to develop a Natural Language Processing (NLP) model using the FastText word embedding method and Gated Recurrent Unit (GRU) architecture for analyzing sentiment tendencies in comments on the Oppenheimer’s movie trailers. Based on the training and evaluation results, the TextBlob VADER model was found to be the best model with an accuracy of 0,93. The sentiment trend analysis on each movie trailer using this model showed that trailer 2 was more favored by viewers compared to trailer 1. Additionally, this research successfully developed a simple web app to assist in the sentiment analysis process.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/153582
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository