View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Civil and Environmental Engineering
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Civil and Environmental Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Optimasi Sistem Fertigasi pada Fertigator Otomatis Nirdaya (FONi) pada Pembibitan Tanaman Akasia dan Eukaliptus di dalam Greenhouse

      No Thumbnail [100%x80]
      View/Open
      Cover (507.2Kb)
      Fulltext (1.203Mb)
      Lampiran (1.498Mb)
      Date
      2024
      Author
      Romadona, Anisa
      Arif, Chusnul
      Pribadi, Andik
      Metadata
      Show full item record
      Abstract
      Hutan Tanaman Industri (HTI) berupaya memenuhi kebutuhan kayu bagi industri pulp dan kertas. Tetapi produksi pembibitan akasia dan eukaliptus oleh HTI boros air dan energi listrik, maka FONi menjadi solusi. Tetapi optimasi dengan Algoritma Genetika (AG) untuk penanaman akasia dan eukaliptus pada pembibitan FONi di dalam greenhouse belum ada. Penelitian bertujuan menguji performansi FONi, mengidentifikasi hubungan ketinggian air (WL) dan evapotranspirasi aktual (ETa) untuk kualitas bibit tanaman akasia dan eukaliptus dengan Jaringan Saraf Tiruan (JST) dan menentukan ketinggian air optimum untuk kualitas bibit tanaman akasia dan eukaliptus dengan AG. Penelitian dilakukan di dalam greenhouse di Kinjiro Farm dalam rentang bulan Februari – April 2024 selama 70 hari, pengamatan dengan 2 jenis skenario berupa TA 1 (7 cm – 5 cm) dan TA 2 (5 cm – 3 cm). FONi menghasilkan tanaman akasia dan eukaliptus dengan jumlah daun dan tinggi yang meningkat setiap harinya. Model JST mampu menduga pertumbuhan tanaman dengan baik berdasarkan WL dan ETa dengan R2 untuk akasia dan eukaliptus sebesar 0,9992 dan 0,9978. Pengoptimalisasi dengan AG dihasilkan ketinggian air optimal Akasia sebesar 3,80 cm dan eukaliptus sebesar 5,10 cm.
       
      Industrial Forest Plantation (IFP) was established in an effort to meet the wood demand for the pulp and paper industry. But production of acacia and eucalyptus nurseries by IFP is waste water and electrical energy, so FONi became the solution. But optimization using Genetic Algorithm (GA) for planting acacia and eucalyptus in FONi nurseries in greenhouse does not exist. The research aims to test the performance of the FONi, identify the relationship between water level (WL) and actual evapotranspiration (ETa) for the quality of acacia and eucalyptus seedlings with Artificial Neural Network (ANN) and determine the optimum water level for the quality of acacia and eucalyptus seedlings with AG. The research was conducted in the greenhouse at Kinjiro Farm from February to April 2024 for 70 days with two scenarios, TA 1 (7 cm - 5 cm) and TA 2 (5 cm - 3 cm). FONi produced acacia and eucalyptus plants with the number of leaves and height increasing every day. The JST model was able to predict plant growth well based on the WL and ETa with R2 for acacia and eucalyptus of 0.9992 and 0.9978. Optimization with AG resulted in an optimal water level of acacia of 3.80 cm and eucalyptus of 5.10 cm.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/153549
      Collections
      • UT - Civil and Environmental Engineering [958]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      NoThumbnail