View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Prediksi Produksi Volume Nira Berbasis Citra Multispektral Menggunakan Metode Regresi Linier Berganda

      Thumbnail
      View/Open
      Cover (550.1Kb)
      Full Text (3.101Mb)
      Lampiran (386.1Kb)
      Date
      2024
      Author
      Arjani, Adela Puspa
      Solahudin, Mohamad
      Widodo, Slamet
      Metadata
      Show full item record
      Abstract
      Tanaman tebu (Saccharum officinarum) memegang peran sebagai salah satu komoditas nasional yang sangat penting dalam pengembangan sub-sektor perkebunan. Selama musim panen, persentase nira tebu diukur setiap minggunya dengan menggunakan metode destruktif melalui pengambilan sampel di area perkebunan tebu. Penundaan penggilingan tebu dapat mengakibatkan penurunan rendemen gula dan kualitas nira tebu, sehingga diperlukan suatu metode yang mampu dengan cepat menduga volume nira tebu dari suatu kebun untuk memastikan bahwa jumlah panen tidak melebihi kapasitas olah pabrik gula. Penggunaan teknologi penginderaan jarak jauh melalui foto udara di bidang pertanian membuka peluang untuk mendapatkan data spasial dan digital dengan cepat. Penggunaan kamera multispektral akan memberikan gambaran kondisi lahan secara lebih lengkap pada berbagai panjang gelombang yang berguna bagi pendugaan sebaran volume nira tebu. Tujuan dari penelitian ini yaitu untuk mengembangkan model prediksi produksi volume nira berbasis citra multispektral dengan metode regresi linier berganda. Penelitian ini diawali dengan pengambilan sampel tanaman tebu di kebun tebu pada grid dengan ukuran 2m x 2m diikuti dengan pengambilan citra UAV (Unmaned Aerial Vehicle) pada hari yang sama. Data fenotipik tanaman tebu dan jumlah volume per satuan volume batang tebu yang didapat kemudian dikorelasikan dengan data nilai reflektansi multispektral dengan analisis regresi linier berganda untuk menduga volume nira. Model regresi linier berganda yang dihasilkan adalah Y = 6,303 + 9,815X1 − 5,901X2 + 74,138X3 + 6,644X4, di mana X1, X2, X3, dan X4 merupakan variabel independen berupa nilai reflektansi green, red, red edge, dan near infrared. Model tersebut memiliki koefisien determinasi (R2) sebesar 0,714 dengan MAPE 8,098%.
       
      Sugarcane (Saccharum officinarum) plays a role as one of the most important national commodities in the development of the plantation sub-sector. During the harvest season, the percentage of sugarcane juice is measured weekly using the destructive method through sampling in the sugarcane plantation area. Delays in sugarcane milling can result in a decrease in sugar yield and the quality of sugarcane juice, so a method is needed which to rapid estimate the volume of sugarcane juice from a plantation to ensure that the amount of harvest not exceed the processing capacity of the sugar factory. The use of remote sensing technology through aerial photography in agriculture opens up opportunities to obtain spatial and digital data quickly. The use of multispectral cameras will provide a more complete picture of land conditions at various wavelengths that are useful for estimating the distribution of sugarcane juice volume. The purpose of this research was to develop a prediction model of juice volume production based on multispectral imagery with multiple linear regression methods. This research began with sampling sugarcane plants in fields using a grid with a size of 2m x 2m followed by UAV (Unmaned Aerial Vehicle) image capture on the same day. The phenotypic data of sugarcane plants and the amount of volume per unit volume of sugarcane stems obtained were then correlated with multispectral reflectance value data with multiple linear regression analysis to estimate the volume of juice. The resulting multiple linear regression model was Y= 6,303 + 9,815X1 − 5,901X2 + 74,138X3 + 6,644X4 , where X1, X2, X3, and X4 are independent variabels in the form of green, red, red edge, and near infrared reflectance values. The model had a coefficient of determination (R2) of 0,714 with a MAPE of 8,098%.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/152856
      Collections
      • UT - Agricultural and Biosystem Engineering [3593]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository