View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pemodelan Jaringan Saraf Tiruan Pertumbuhan Sawi Pagoda pada Sistem Hidroponik

      Thumbnail
      View/Open
      Cover (2.735Mb)
      Fullteks (5.507Mb)
      Lampiran (361.5Kb)
      Date
      2024
      Author
      Taqiy, Muhammad Faqih
      Suhardiyanto, Herry
      Metadata
      Show full item record
      Abstract
      Pemodelan Jaringan Saraf Tiruan Pertumbuhan Sawi Pagoda pada Sistem Hidroponik. Dibimbing oleh HERRY SUHARDIYANTO. Sawi pagoda merupakan sayuran yang kaya akan nutrisi. Sawi pagoda umumnya dibudidayakan secara konvensional. Namun berkurangnya lahan pertanian menjadi sebuah kendala. Budidaya di dalam greenhouse dengan sistem hidroponik dan root zone cooling (RZC) membantu mengoptimalkan produktivitas tanaman. Oleh karena itu, dilakukan penelitian ini untuk mempelajari hubungan antara pertumbuhan sawi pagoda terhadap faktor-faktor lingkungan. Selama percobaan, suhu harian rata-rata di dalam greenhouse berkisar antara 33.1C hingga 39.1C. RZC telah dapat menjaga suhu perakaran dalam rentang 24.4C hingga 26.7C. Parameter lingkungan yang diamati meliputi suhu udara di dalam greenhouse, radiasi matahari, kelembapan relatif udara di dalam greenhouse, dan suhu perakaran. Parameter tanaman meliputi bobot segar, bobot kering, jumlah daun, dan luas permukaan daun. Hubungan parameter-parameter tersebut telah dapat diterangkan sesuai model ANN yang telah dikembangkan yaitu menggunakan algoritma backpropagation. Model ANN terbaik memiliki momentum 0.9, learning rate 0.1, dan arsitektur 11-2-2. Evaluasi model ANN menghasilkan nilai R2 sebesar 0.98800 dan nilai RMSE bobot segar dan bobot kering secara berturut-turut sebesar 3.54870 dan 0.24627. Nilai-nilai tersebut menunjukkan bahwa model ANN dapat memprediksi bobot segar H+2 dan bobot kering H+2 dengan sangat baik.
       
      Artificial Neural Network Modelling of Tatsoi Growth on Hydroponic System. Supervised by HERRY SUHARDIYANTO. Tatsoi is a vegetable that is rich in nutrition. Tatsoi is usually cultivated conventionally. However, the decreasing agricultural land has become a problem. Cultivation in a greenhouse with a hydroponic and root zone cooling (RZC) system helps optimize the plant’s productivity. Therefore, this research was performed to study the correlation between tatsoi’s growth and environmental factors. During the experiment, the daily average air temperatures inside the greenhouse were between 33.1C and 39.1C. RZC kept the root zone temperature between 24.4C and 26.7C. The observed environmental factors were outside air temperature, solar radiation, relative humidity of inside air, and root zone temperature. The plant’s growth parameters were fresh weight, dry weight, number of leaves, and leaf area. The correlation between these parameters has been explained through the ANN model developed using the backpropagation algorithm. The best ANN model figures were 0.9 momentum, 0,1 learning rate, and 11-2-2 as the architecture. The model evaluation produced an R2 value of 0.98800 and fresh weight and dry weight RMSEs of 3.54870 and 0.24627, respectively. These values show that the model could predict fresh weight D+2 and dry weight D+2 very well.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/152130
      Collections
      • UT - Agricultural and Biosystem Engineering [3593]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository