View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Silviculture
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Silviculture
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Akurasi Sensor MODIS dan VIIRS dalam Mendeteksi Kebakaran Hutan dan Lahan di Kabupaten Muaro Jambi, Provinsi Jambi

      No Thumbnail [100%x80]
      View/Open
      Cover (425.9Kb)
      Full teks (2.426Mb)
      Lampiran (279.6Kb)
      Date
      2024-04-03
      Author
      Syahira, Talitha Nur
      Nurhayati, Ati Dwi
      Metadata
      Show full item record
      Abstract
      Kabupaten Muaro Jambi merupakan kabupaten di Provinsi Jambi yang memiliki jumlah titik hotspot terbanyak dalam satu dekade terakhir. Penelitian bertujuan menganalisis akurasi sensor MODIS dan VIIRS dalam mendeteksi kebakaran hutan dan lahan di Kabupaten Muaro Jambi. Sumber yang digunakan adalah data sebaran hotspot dari sensor MODIS dan VIIRS di Kabupaten Muaro Jambi dan citra Sentinel-2. Hasil penelitian menunjukkan bahwa dalam rentang tahun 2019-2022, hotspot paling banyak ditemukan pada tahun 2019. Jumlah hotspot pada rentang tahun tersebut adalah 3.404 yang terdeteksi oleh sensor MODIS dengan akurasi sebesar 49,43% dan 15.015 yang terdeteksi oleh sensor VIIRS dengan akurasi sebesar 50,98%. Selang kepercayaan sedang (moderate) hingga tinggi (high) menunjukkan frekuensi tertinggi dalam mendeteksi kebakaran hutan dan lahan.
       
      Muaro Jambi District is a district in Jambi Province that has the highest number of hotspots in the last decade. The research aims to analyze the accuracy of MODIS and VIIRS sensors in detecting forest and land fires in Muaro Jambi Regency. The sources used are hotspot distribution data from MODIS and VIIRS sensors in Muaro Jambi District and Sentinel-2A imagery. The results of the research show that in the 2019-2022 period, the highest number of hotspots were discovered in 2019. The number of hotspots in that year was 3,404 detected by the MODIS sensor with an accuracy of 49,43% and 15.015 detected by the VIIRS sensor with an accuracy of 50,98%. The moderate to high confidence interval shows the highest frequency of detecting forest and land fires.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/145171
      Collections
      • UT - Silviculture [1369]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      NoThumbnail