Show simple item record

dc.contributor.advisorSaharjo, Bambang Hero
dc.contributor.advisorSutikno, Sigit
dc.contributor.advisorRusolono, Teddy
dc.contributor.authorSilviana, Sinta Haryati
dc.date.accessioned2024-01-30T23:42:26Z
dc.date.available2024-01-30T23:42:26Z
dc.date.issued2024-01-30
dc.identifier.citationAgus F, Hairiah K, Mulyani A. 2011. Pengukuran Cadangan Karbon Tanah Gambut. Petunjuk Praktis. World Agroforestry Centre-ICRAF, SEA Regional Office dan Balai Besar Penelitian dan Pengembangan Sumber Daya Pertanian (BBSDLP), Indonesia. 58 p. Anderson IP, Bowen MR. 2000. Fire Zones and the Threat to the Wetlands of Sumatra, Indonesia UE – Ministry of Forestry. Andriesse, J.P. 1988. Nature and Management of Tropical Peat Soils. FAO Soils Bulletin 59. Food and Agriculture Organization of the United Nations, Rome, Italy. 169 p Anshari GZ, Afifudin M, Nuriman M, Gusmayanti E, Arianie L, Susana R, Nusantara RW, Sugardjito J, Rafiastanto A. 2010. Drainage and land use impacts on changes in selected peat properties and peat degradation in West Kalimantan Province, Indonesia. Biogeosciences. 7:3403-3419. Ballhorn U, Siegert F, Mason M, Limin, S. 2009. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Proceedings of the National Academy of Sciences of the United States of America (online). The paper can be read and downloaded at www.pnas.org/cgi/doi/10.1073/pnas. 0906457106. Barus, Iman LS. 2009. Perbandingan hasil pemetaan kesatuan hidrologis dan kubah gambut dengan citra optik Landsat TM dan SAR. Di dalam: Raimadoya MA, editor. Prosiding Semiloka Geomatika - SAR Nasional; 2009 Jul 21; Bogor, Indonesia. Bogor (ID): Crestpent Press. 187–194. Basuki I, Kauffman JB, Murdiyarso D, Anshari G. 2016. Carbon stocks and emissions from degradation and conversion of tropical peat swamp forets in West Kalimantan, Indonesia. In: 15th International Peat Congress 2016: Peatlands in harmony “Agriculture, industry and nature”, 15th-19th August 2016, pp. 260–263. Kuching, Serawak, Malaysia Basuki I, Kauffman JB, Peterson J, Anshari G, Murdiyarso D. 2018. Land cover changes reduce net primary production in tropical coastal peatlands of West Kalimantan. Indonesia. Mitigation and Adaptation Strategies for Global Change. 24(4): 557-573. doi.org/10.1007/s11027-018-9811-2. Bonnett SA, Ross S, Linstead C, Maltby E. 2009. A review of techniques for monitoring the success of peatland restoration. Technical Report. Natural England, SWIMMER Brown S. 1997. Estimating biomass and biomass change of tropical forest. A Primer. FAO. USA. FAO Forestry Paper No.134. Chandler C, Cheney P, Trabaud L, Williams D. 1983. Fire in Forestry. Vol I.A Willey-Interscience Publication. NewYork Chimner RA, Ott CA, Perry CH, Kolka RK. 2014. Developing and evaluating rapid field methods to estimate peat carbon. Wetlands 34 (6):1241–1246. doi: 10.1007/s13157-014-0574-6 Cortez P, Morais A. 2007. A data mining approach to predict forest fires using meteorological data. Dalam: Neves J, Santos MF, Machado JM (eds.) Proceedings of the EPIA 2007–Portuguese conference on artificial intelligence, Guimaraces, Portugal Heidelberg: Springer. 512–523. Couwenberg J, Dommain R, Joosten H. 2010. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Global Change Biology. 16: 1715-1732. Darusman T, Murdiyarso, D, Impron I, Chaniago IA, Lestari DP. 2022. Carbon Dynamics in Rewetted Tropical Peat Swamp Forests. Climate. 10(3): 35 https://doi.org/10.3390/cli10030035 DeGroot WJ, Flannigan MD, Cantin AS. 2013. Climate change impact on future boreal fire regimes. Forest Ecology and Management. 294: 35-44. doi: 10.1016/j.foreco.2012.09.027 Dharmawan IWS. 2013. Persamaan alometrik dan cadangan karbon vegetasi pada hutan gambut primer dan bekas terbakar. Jurnal Penelitian Hutan Dan Konservasi Alam. 10(2): 175–191. Dohong A, Aziz AA, Dargusch P. 2017b. A review of the drivers of tropical peatland degradation in South-East Asia. Land Use Policy. 69: 349-360 Dohong A, Cassiophea L, Sutikno, S, Triadi BL, Wirada, F., Rengganis, P., & Sigalingging, L. 2017. Modul Pelatihan: Pembangunan Infrastruktur Pembasahan Gambut Penyekatan Kanal Berbasis Masyarakat. Jakarta: Badan Restorasi Gambut Republik Indonesia. Dommain R, Couwenberg J, Glaser PH, Joosten H, Suryadiputra N. 2014. Carbon storage and release in Indonesian peatlands since the last deglaciation. Quaternary Science Reviews. 97(05):1–32. doi:10.1016/j.quascirev.2014.05.002 Dommain R, Couwenberg J, Joosten H. 2011. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quaternary Science Reviews. 30: 999–1010. https://doi.org/10.1016/j.quascirev.2011.01.018 Driessen PM, Suhardjo H. 1976. On the defective grain formation ff sawah rice on peat. Soil Res. Inst. Bull. 3: 20 – 44. Bogor. DW. 2019. Emisi Karbon Karhutla Indonesia Lebih Parah Dibanding Amazon. https://www.dw.com/id/emisi-karbon-kebakaran-hutan-di-indonesia-lebih-parah-dibanding-hutan-amazon/a-51432310 Falahnsia AR, Teguh H. 2013. Pemanfaatan Citra Landsat 7 ETM+ Untuk Menganalisa Kelembaban Hutan Berdasarkan Nilai Indeks Kekeringan Di Hutan KPH Banyuwangi Utara. Teknik POMITS. 10 (10): 2301-9271 Fernando, 2006. 2-D Inversion of VLF-EM Single Frequency, Centro de Geofisica da Universidade de Lisboa, Portugal Fraser RH, Li Z, Chilar J. 2000. Hotspot and NDVI differencing synergy (HANDS): A new technique for burned area mapping over boreal forest. J Remote Sensing of Environment. 72: 362–376. Furukawa Y, Inubushi K, Ali M, Itang AM, Tsuruta H. 2005. Effect of changing groundwater levels caused by land-use changes on greenhouse gas fluxes from tropical peat lands. Nutrient Cycling in Agroecosystems 71: 81–91, 2005. DOI 10.1007/s10705-004-5286-5. Giessen W, Sari ENN. 2018. Tropical Peatland Restoration report: Indonesian case. Millennium Challenge Account – Indonesia. 82p. doi: 10.13140/RG.2.2.30049.40808. Graham LLB, Page SE. 2012. Artificial bird perches for the regeneration of degraded tropical peat swamp forest: A restoration tool with limited potential. Restoration Ecology. 20(5):631–637 Gundarson LH. 2000. Ecological resilience-in theory and application. Ann Rev Ecol Syst. 31(1): 425-439 Hairiah K, Rahayu. 2007. Pengukuran karbon tersimpan di berbagai macam penggunaan . Bogor (ID): World Agroforestry Centre, ICRAF SEA Regional Office. Haryanto dan Pangloli. 1992. Potensi dan Pemanfaatan Sagu. Penerbit Kanisius, Yogyakarta,140p Hansen MC, Potapov P V, Moore R, Hancher M, Turubanova SA, Tyukavina A (2013) High- Resolution Global Maps 134, 2011–2014. Hao M, Liu M, Crutzen P. 1990. Estimate of annual and regional release of CO2 and other trace gases to the atmosphere from fire in tropic based on the FAO statistics for the period 1975 and 1980. Di dalam: Goldammer J, editor. Fire in Tropical Biota (Ecological Studies 84). New York: Springer. hlm. 440-460. Hardjowigeno S. 1997. Pemanfaatan gambut berwawasan lingkungan. Alami 2(1):3-6. Hergoualc’h K, Verchot LV. 2014. Greenhouse gas emission factors for land use and land-use change in Southeast Asian peatlands. Mitigation and Adaptation Strategies for Global Change 19(6), 789-807. DOI: 10.1007/s11027-013-9511-x. Hergoualc’h KA, Gutiérrez-Vélez VH, Menton M, Verchot LV. 2017. Characterizing degradation of palm swamp peatlands from space and on the ground: an exploratory study in the Peruvian Amazon. Foresr Ecology Management. 393:63–73. Hergoualc'h K, Verchot LV. 2011. Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: a review. Global Biogeochemical Cycles 25 ISSN: 0886–6236. Hirano T, Kusin K, Limin S, Osaki M. 2014. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland. Global Change Biology. 20: 555–565. doi: 10.1111/gcb.12296. Hommeltenberg J, Schmid HP, Drösler M, Werle P. 2014. Can a Bog Drained for Forestry be a Stronger Carbon Sink than a Natural Bog Forest? Biogeosciences, 11, 3477-3493. Hooijer A, Page S, Jauhiainen J, Lee WA, Lu XX, Idris A, Anshari G. 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences. 9(3): 1053-1071. doi:10.5194/bg-9-1053-2012. Hooijer A, Silvius M, Wösten H, Page S. 2006. PEAT-CO2. Assessment of CO2 emissions from drained peatlands in SE Asia. Hooijer AS, Page JG, Canadell, Silvius M, Kwadijk J, Wösten H, Jauhiainen J. 2010 – Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences. 7: 1505–1514, www.biogeosciences.net/7/1505/2010/ doi:10.5194/bg-7-1505-2010 Huang C, Goward SN, Masek JG, Thomas N, Zhu Z, Vogelmann JE. 2010. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sen Environ. 114 (1), 183–198. Huijnen V, Wooster MJ, Kaiser JW, Gaveau DLA, Flemming J, Parrington M, Inness A, Murdiyarso D, Main B, van Weele M. 2016: Fire carbon emissions over maritime south-east Asia in 2015 largest since 1997. Scientific Reports. 6:26886.doi:10.1038/srep26886. 2016. Jauhiainen J, Hooijer A, Page SE. 2012. Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra. Indonesia. Biogeosciences. 9 (2): 617- 30. John Wiley and Sons. Inc. doi: 10.5194/bg-9-1053-2012 Josten H. 2009. The Global Peatland CO2 Picture: Peatland Status and Drainage Related Emissions in All Countries of the World. Univ. Greifswald, 2009 Kementerian Lingkungan Hidup. 2009. The Indonesian Second National Communication to the UNFCC Bahan Presentasi. Indonesia Kennedy R, Yang Z, Gorelick N, Braaten J, Cavalcante L, Cohen W, Healey S. 2018b. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens 10 (5), 691. https://doi.org/10.3390/rs10050691 Koh LP, Miettinen J, Liew SC, Ghazoul J. 2011. Remotely sensed evidence of tropical peatland conversion to oil palm. Proceedings of the National Academy of Sciences of the United States of America. 108(12): 5127–5132. doi.org/10.1073/pnas.1018776108 Könönen MJ, Jauhiainen R, Laiho K, Kusin, Vasander H. 2015. Physical and chemical properties of tropical peat under stabilised land uses. Mires and Peat. 16(8):1-13. Kurnianto S, Selker J, Boone Kauffman J, Murdiyarso D, Peterson JT. 2018 The influence of land-cover changes on the variability of saturated hydraulic conductivity in tropical peatlands. Mitigigation Adaptation Strategy Global Change: 1–21 Online: http://link.springer.com/10.1007/s11027-018-9802-3 Kurnianto. S. 2017. The Eco-hydrology of Tropical Peatlands Associated with Land Cover Changes. For the degree of Doctor of Philosophy in Fisheries Science presented on August 14 2017. Krisnawati H, Adinugroho WC, Imanuddin R. 2012. Monograf Model-Model Alometrik untuk Pendugaan Biomassa Pohon pada Berbagai Tipe Ekosistem Hutan di Indonesia. Bogor: Badan Penelitian dan Pengembangan Konservasi dan Rehabilitasi Kementrian Kehutanan dan Lingkungan Hidup Lee S, Kang P, Cho S. 2014. Neurocomputing probabilistic local reconstruction for k -NN regression and its application to virtual metrology in semi conductor manufacturing. Neurocomputing. 131:427–439 Lira MAT, Da Silva EM, Alves JMB, Veras GVO. 2014. Estimation of wind resources in the coast of Ceará, Brazil, using the linear regression theory. Renewable and Sustainable Energy Reviews. 39:509–529. Liu Y, Qin D, JianBo L, ShinBin L, Jin Y. 2014. Study of burn scar extraction automatically based on level set method using remote sensing data. PloS ONE. 9(2): e87480. DOI:10.1371/journal.pone.0087480 Maizaldi, Amin B, Samiaji J, 2019. Estimasi Jumlah Stok Karbon Yang Tersimpan di Basah Desa Sungai Tohor Kecamatan Tebing Tinggi Timur Kabupaten Kepulauan Meranti Provinsi Riau. Dinamika Lingkungan Indonesia 6(2):60. DOI:10.31258/dli.6.2.p.60-66 Meijide A, Röll A, Fan Y, Herbst M, Niu F, Tiedemann F, June T, Rauf A, Hölscher D, Knohl A. 2017. Controls of water and energy fluxes in oil palm plantations: Environmental variables and oil palm age. Agricultural and Forest Meteorology. 239:71–85. Miettinen J, Hans-Jurgen S, Frederic A. 2014. Remote sensing of forest degradation in Southeast Asia—Aiming for a regional view through 5–30 m satellite data. Global Ecology and Conservation. 2:24–36 Miettinen J, Hooijer A, Tollenaar D, Page S., Malins C., Vernimmen R., Shi C., and Liew S. C. 2012. Historical Analysis and Projection of Oil Palm Plantation Expansion on Peatland in Southeast Asia. White Paper Number 17, February 2012. International Council on Clean Transportation. Miettinen J, Shi C, Liew SC. 2016. Land Cover Distribution in the Peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with Changes since 1990. Global Ecology Conservation 6:67-78. Murdiyarso D, Hergoualc’h, K. and Verchot, L. 2010. Opportunities for Reducing Greenhouse Gas Emissions in Tropical Peatlands. Proceedings of the National Academy of Sciences of the United States of America, 107, 19655-19660. https://doi.org/10.1073/pnas.0911966107 Murdiyarso D, Donato D, Kauffman JB, Kurnianto S, Stidham M, and Kanninen M (20092010) Carbon storage in mangrove and peat land ecosystems: A preliminary account from plots in Indonesia. Working paper 48. CIFOR, Bogor. doi: 10.17528/cifor/003233 Murdiyarso D, Hergoualc’h K, Basuki I, Sasmito, S. Hanggara, B. 2017. Cadangan Karbon di Gambut. CIFOR. Murdiyarso D, Hergoualc’h K, Verchot L. 2010. Opportunities for Reducing Greenhouse Gas Emissions in Tropical Peatlands. Proceedings of the National Academy of Sciences of the United States of America, 107, 19655-19660. https://doi.org/10.1073/pnas.0911966107 Murdiyarso D, Purbopuspito J, Kauffman JB, et al. 2015. The potential of Indonesian mangrove forest for global climate change mitigation. Nature Climate Change, 5 Nelson DW, Sommers LE. 1996. Total Carbon, Organik Carbon, and Organik Metter, P.961.1010. In: D.L. Sparks AL. Page PA Helmke RH, Loeppert PN. Soltan Pour, M.A. Tabatabai, Johnston CT, Sumner ME. Methods of soil Analysis Part 3: Chemical Methods. Soil Sci.soc.Am.Inc, and Am. Soc.Agron.Inc. Medison. Noor A. 2001. Pertanian gambut: potensi dan kendala. Kanisius: 174.Yogyakarta. Noor M, Masganti, Fahmuddin A. 2014. Pembentukan dan karakteristik gambut tropika indonesia. gambut Indonesia. Pembentukan karakteristik dan potensi mendukung ketahanan pangan. IAARD Press. Badan Penelitian dan Pengembangan Pertanian. Jakarta. Ordonez JC, Luedeling E, Kindt R, Tata HL, Harja D, Jamnadass R, Noordwijk MV. 2014. Constraints andopportunities for tree diversity management along theforest transition curve to achieve multifunctionalagriculture. Current Opinion in Environmental Sustainability. 6:54–60. http://dx.doi.org/10.1016/ j.cosust.2013.10.009 Özbayoğlu M, ozer R. 2012. Estimation of the burned area in forest fires using computational intelligence techniques. Procedia Computer Science. 12: 282–287. Page S, Mishra, S, Agus F, Anshari G, Dargie G, Evers S, Jauhiainen J, Jaya A, Jovani-Sancho, AJ, Laurén A, Sjögersten S, Suspense IA, Wijedasa LS, Evans CD. 2022. Anthropogenic impacts on lowland tropical peatland biogeochemistry. Nature Reviews Earth & Environment. 3: 426–443, https://doi.org/10.1038/s43017-022-00289-6, 2022. Page SE, Hosciło A, Wösten JHM, Jauhiainen J, Silvius M, Rieley J, Ritzema HP, Tansey K, Graham L, Vasander H, Limin S. 2009. Restoration ecology of lowland tropical peatlands in Southeast Asia — current knowledge and future research directions. Ecosystems. 12(6):888-905. doi: 10.1007/s10021-008-9216-2. Page SE, Rieley JO, Banks CJ. 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology. 17(2): 798-818. doi: 10.1111/j.1365-2486.2010.02279.x. Page SE, Siegert F, Rieley JO, Boehm HDV, Jaya A, Limin S. 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature. 420(6911): 61-65. doi: 10.1038/nature01131. Parish F, Sirin A, Lee AD, Silvius M. 2013. Assessment on Peatlands, Biodiversity and Climate change. Global Environment Centre Peraturan Menteri Lingkungan Hidup dan Kehutanan No. P.15/MENLHK/SETJEN/KUM.1/2/2017 tentang tata cara pengukuran muka air tanah di titik penataan ekosistem gambut. (Berita Negara Republik Indonesia Tahun 2017 Nomor 337). Peraturan Pemerintah Nomor 71 Tahun 2014 tentang perlindungan dan pengelolaan pengelolaan ekosistem gambut (Lembaran Negara Republik Indonesia Tahun 2014 Nomor 209, Tambahan Lembaran Negara Republik Indonesia Nomor 5580). Profil Desa Sungaitohor. 2018. Konservasi hutan gambut melalui usaha perikanan untuk kesejahteraan masyarakat di Desa Sungai Tohor, Kab Kepulauan Meranti Provinsi Riau. Purwadhi SH, Sanjoto TB. 2008. Pengantar Interpretasi Citra Penginderaan Jauh’, Jakarta: LAPAN Putra EI, Puspadewi IL. 2020. Pengaruh Kelembapan, Suhu Udara Dan Curah Hujan Terhadap Kejadian Kebakaran Gambut Di Kabupaten Tanjung Jabung Timur, Jambi. Jurnal Silvikultur Tropika. 10(3): 189 – 193 Qirom MA, Yuwati TW, Santosa PB. 2013. The Changes of Natural Regeneration and Surface Carbon Stock after Peat Swamp Forest Fires. In Osaki, Takahashi H, Honma T, Hirano T, Ardiano, Hayasaka B, Dulbert B (Eds.), Proceeding of Interantional Symposium on Wild Fire and Carbon Management in Peat-Forest in Indonesia (pp. 129–134). Qirom MA, Yuwati TW, Santosa PB. 2013. The Changes of Natural Regeneration and Surface Carbon Stock after Peat Swamp Forest Fires. In Osaki M, Takahashi H, Honma T, Hirano T, Ardiano, Hayasaka H, Kohyama T, Tanaka Hirose K, Segah H, Shiodera S, Momota E, Setiadi B, Widen K, Usup A, Gumiri S, Hidayat A, Masripatin N, Rahajoe JS, Dulbert B (Eds.). Proceeding of International Symposium on Wild Fire and Carbon Management in Peat-Forest in Indonesia (Issue September, pp. 129–134). Hokkaido University, Palangka Raya University. Radjagukguk B. 1997. Peat Soils of Indonesia: Location, Clasification and Problems for Sustainability. In : J.O. Riely and S.E. Page. Biodiversity and Sustainability of Tropical Peatland. Samara Publishing Limited. Cardigan, UK. Pp. 45-54. Rieley JO, Page SE. 2005. Wise Use of Tropical Peatlands: Focus on Southeast Asia. Nottingham, UK. 168 p. Rieley JO, Wüst RAJ, Jauhiainen J, Page SE, Wösten H, Hoijer A, Siegert F, Limin S, Vasander H. Stahlhut. 2008. Tropical peatlands: carbon store, carbon gas emissions and contribution to climate change processes. International Peat Society. 148 - 181. ISBN 9789529940110. Rieley JO, Ahmad-Shah AA, Brady MA. 1996. The extent and nature of tropical peat swamps, In Tropical Lowland Peatlands of Southeast Asia, Proceedings of a Workshop on Integrated Planning and Management of Tropical Lowland Peatlands, Cisarua, Indonesia, 3-8 July 1992, Maltby E, Immirzi CP, Safford RJ. (eds.), IUCN, Gland, Switzerland, x + 294 pp Ritzema H, Limin S, Kusin K, Jauhiainen J, Wosten H. 2014. Canal blocking strategies for hydrological restoration of degraded tropical peatlands in Central Kalimantan, Indonesia. Catena, 114, pp.11–20. doi: 10.1016/j.catena.2013.10.009 Ritzema H. 2007. The role of drainage in The Wise use of Tropical peatlands. Alterra ILRI. Wageninge University and Research Centre. AA Wageningen The Netherlands. Riwandi. 2001. Kajian Stabilitas Gambut Tropika Indonesia Berdasarkan Analisis Kehilangan Karbon Organik, Sifat Fisiko Kimia dan Komposisi Bahan Gambut. Disertasi. Program Pascasarjana Institut Pertanian Bogor. Runtunuwu E, Kartiwa B, Kharmilasari K, Sudarman K, Nugroho W T, Firmansyah A. 2011. Dinamika Elevasi Muka Air pada dan Saluran di Gambut. Jurnal RISET Geologi dan Pertambangan. 21(2): 63-74 Saharjo BH. 1999. Study on Forest Fire Prevention for Fast Growing Tree Species Acacia mangium Plantation in South Sumatera, Indonesia. Kyoto University, Graduede School of agriculture. Pp: 32-39. Saharjo BH. 2016. Pengendalian kebakaran hutan dan atau Indonesia. Bogor (ID): PT Penerbit IPB Press [SNI] Standard Nasional Indonesia 7724. 2011. Pengukuran dan penghitungan cadangan karbon -Pengukuran lapangan untuk penaksiran cadangan karbon hutan (ground based forest carbon accounting) Sianturi F. 2006. Perubahan Sifat Fisik dan Kimia Tanah Pada Areal Bekas Terbakar di Tegakan Puspa (Schima wallichii Korth). Skripsi Jurusan Budidaya Hutan, Fakultas Kehutanan. Institut Pertanian Bogor. Tidak diterbitkan. Silviana SH, Saharjo BH, Sutikno, S. 2020. Pengaruh Kebakaran dan Rewetting terhadap Tinggi Muka Air, Komposisi Vegetasi dan Cadangan Karbon Gambut Tropis. Tesis. IPB University Silviana SH, Saharjo BH, Sutikno S. 2019. Effect of wildfires on tropical peatland vegetation in Meranti Islands District, Riau Province, Indonesia. Biodiveritas. 20(10): 3056-3062. DOI: 10.13057/biodiv/d201039 Sinclaira AL, Laura LB, Grahambc, Putra EI, Saharjo BH, Applegatec G, Grovera SP, Cochranee MA. 2019. Effects of distance from canal and degradation history on peat bulk density in a degraded tropical peatland. Elsevier Sosilawaty, Jaya A, Rotinsulu JM, Hastari B, Hidayat N, Sianipar, E. Effect of Drainage Channels on Vegetation Diversity of Tropical Peatswamp Forest of Sebangau National Park, Indonesia. Journal of Experimental Biology and Agricultural Sciences.10(1):48-63 Suratmo, F. Gunarwan, E.A. Husaeni, N. Surati Jaya. 2003. Pengetahuan Dasar Pengendalian Kebakaran Hutan. Fakultas Kehutanan IPB. Bogor. Susilo, GE, Yamamoto K, Imai T. 2013. Modeling Groundwater Level Fluctuation in the Tropical Peatland Areas under the Effect of El Nino. Procedia Environmental Sciences 17, pp. 119-128. Availabelfrom:doi:10.1016/j.proenv.20 13.02.019 Suswati, DB, Hendro D, Shiddieq D. Indradewa.2011. Identifikasi Sifat Fisik Gambut Rasau Jaya III Kabupaten Kubu Raya Untuk Pengembangan Jagung. Jurnal Perkebunan dan Tropika. 1:31- 40. Sutarta ES, Siregar HH, Harahap IY, Sugiyono, Rahutomo S. 2006. Potensi untuk kelapa sawit di Indonesia. Pusat Penelitian Kelapa Sawit. Medan Sutikno S, Nasrul B, Gunawan H, Jayadi R, Rinaldi, Saputra S, Yamamoto K. 2017. The effectiveness of canal blocking for hydrological restoration in tropical peatland. MATEC Web of Conferences 276. Sutikno S, Rinaldi,Yusa M, Nasrul B, Yesi, Chairul, Prayitno A, Putra A, Ardi MG. 2023. Water Management for Integrated Peatland Restoration in Pulau Tebing Tinggi PHU, Riau. Mizuno K et al. (eds.), Vulnerability and Transformation of Indonesian Peatlands, Global Environmental Studies, https://doi.org/10.1007/978-981-99-0906-3_9 Syaufina L. 2008. Kebakaran Hutan Dan Di Indonesia. Malang: PT. Bayu Media Publishing. Tacconi L. 2003. Kebakaran hutan di Indonesia: penyebab, biaya, dan implikasi kebijakan. CIFOR Occasional Paper. 38(1):14. Tiryaki S, Öz Ş, Y İ. 2014. Comparison of artificial neural network and multiple linear regression models to predict optimum bonding strength of heat treated woods. International Journal of Adhesion & Adhesives. 55:29–36. Toriyama J. Takahashi T, Nishimura S, Sato T, Monda Y, Saito H, Kiyono Y. 2014. Estimation of fuel mass and its loss during a forest fire in peat swamp forests of Central Kalimantan, Indonesia. Forest Ecology and Management, 314, 1–8. http://doi.org/10.1016/j.foreco.2013.11.034 Tuittila ES, Vasander H, Laine J. 2009. Impact of rewetting on vegetation of a cut-away peatland. Applied Vegetation Science. 3(2):205 - 212 Varma, A. 2003. The economics of slash and burn: a case study of the 1997-1998 Indonesia forest fires. Ecological Economics. 46 (2003):159—171. Verbesselt J, Hyndman R, Newnham G, Culvenor D. 2010a. Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment 114, 106-115. Verbesselt J, Hyndman R, Zeileis A, Culvenor D. 2010b. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sensing of Environment. 114:2970-2980 Verwer C, Meer P Van Der. 2010. Carbon pools in tropical peat forest - Towards a reference value for forest biomass carbon in relatively undisturbed peat swamp forests in Southeast Asia. Alterra Wageningen, UR, Wageningen. Wakhid N, Hirano T, Okimoto Y, Nurzakiah S, Nursyamsi D. 2017. Soil carbon dioxide emissions from a rubber plantation on tropical peat. Science of Total Environment. 857–865. http://dx.doi.org/10.1016/j.scitotenv.2017.01 .035 Wasis B. 2003. Dampak Kebakaran Hutan dan terhadap Kerusakan Tanah. Wasis B. 2018. Impact on Peatland Canal Blocking of Soil Properties in the Eks PLG Million Ha of Central Kalimantan Province. Advance Research in Agriculture and Veterinary Science 5. Watanabe H. 1986. A view an rewet management of sago palm in Batu Pahat. Malaysia. P.71-74. in Yamada N. Kainuma K. (eds) Sago 85. the third int. Sago Symp. Tokya Japan. May 20-23. The Sago Palm Research Fund. Widyasari NA, Saharjo BH, Solichin, Istomo. 2010. Pendugaan biomassa dan potensi karbon terikat di atas permukaan tanah pada hutan rawa gambut di su. Ilmu Pertanian Indonesia. 5(1):41– 49. Wösten JHM, Clymans E, Page SE, Rieley JO, Limin SH. 2008. Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia. Catena. 73(2): 212-224. Wösten JHM, Ritzema HP. 2001. Land and water management options for peatland development in Sarawak. International Peatland Journal. 11: 59–66. Yudasworo DI. 2001. Dampak Kebakaran Hutan terhadap Sifat Fisik dan Sifat Kimia Tanah. Skripsi. Institut Pertanian Bogor. Bogor Yuwati TW, Rachmanadi D, Turjaman M, Indrajaya Y, Nugroho HYSH, Qirom MA. 2021. Restoration of degraded tropical peatland in Indonesia: a review. Land.10:1170. https://doi.org/10.3390/land10111170id
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/136760
dc.description.abstractPengeringan yang berlebihan (overdrain) dengan pembuatan kanal berdampak secara langsung pada penurunan tinggi muka air tanah (TMAT). Gambut yang sudah terlanjur kering tidak lagi memiliki kemampuan untuk menyerap unsur hara dan menyimpan air (irreversible drying), sehingga pada musim kemarau gambut sangat rentan terhadap bahaya kebakaran. Kebakaran tidak hanya memengaruhi fungsi hidrologi, tetapi juga berdampak pada karakteristik tanah, vegetasi dan kondisi keseluruhan lahan gambut. Untuk mengatasi masalah ini, salah satu tindakan restorasi lahan gambut yang sedang dilakukan adalah melalui penyekatan kanal (canal blocking). Penelitian tentang efektivitas restorasi hidrologi melalui penyekatan kanal di berbagai tutupan lahan sangat penting karena dampaknya yang luas dan beragam terhadap keberlanjutan ekosistem gambut. Oleh karenanya, hal ini menjadi tujuan dan fokus utama dalam penelitian ini. Hal ini mengingat bahwa manajemen hidrologi memiliki peran vital dalam menjaga stabilitas ekosistem gambut serta mengurangi risiko bahaya seperti kekeringan dan kebakaran hutan yang sering terjadi. Penelitian dilakukan di Desa Sungai Tohor, Kecamatan Tebing Tinggi Timur Kabupaten Kepulauan Meranti, Provinsi Riau dari bulan November 2018 sampai dengan bulan Februari 2022. Pengambilan dan pengukuran data dilakukan secara langsung dengan membuat plot permanen pada gambut yang tidak terbakar (lahan sagu, lahan karet, dan hutan sekunder) dan pada lahan gambut bekas terbakar (bekas terbakar-1, bekas terbakar-2, bekas terbakar-3) yang juga sudah dilakukan penyekatan kanal. Penelitian ini membandingkan dua kondisi lahan yang berbeda. Kondisi pertama adalah lahan yang berbatasan langsung dengan penyekatan kanal atau diduga kuat terpengaruh oleh adanya penyekatan kanal (sisi kiri). Kondisi kedua adalah lahan yang tidak berbatasan langsung dengan penyekatan kanal atau diduga kurang terpengaruh oleh adanya penyekatan kanal (sisi kanan). Pengamatan dilakukan pada jarak 1 m, 10 m, 50 m, 100 m, 250 m dan 350 m dari kanal dan dilakukan setiap 2 minggu sekali. Adapun rincian pengamatan yang dilakukan adalah kondisi iklim pada lokasi penelitian, fluktuasi dan jarak pembasahan sebagai pembaruan dalam penelitian ini, karakteristik fisika tanah biomassa vegetasi termasuk pertumbuhan diameter vegetasi Hasil penelitian menunjukkan rapatnya kanopi berkontribusi pada konservasi tanah dan air yang ditandai dengan regulasi iklim mikro seperti suhu yang lebih rendah di permukaan tanah pada lahan tidak terbakar dibandingkan dengan lahan terbakar. Hasil penelitian terhadap fluktuasi TMAT menunjukkan TMAT tertinggi tercatat pada bulan Januari 2021 sedangkan TMAT terendah terjadi pada bulan September 2019 dan menunjukkan fluktuasi yang konsisten pada berbagai tutupan lahan. Jarak pembasahan bergantung pada tipe penggunaan lahan dan faktor cuaca yang memengaruhi TMAT sebagai sumber air. Pada lahan sagu dan hutan sekunder jarak pembasahan mencapai radius terjauh (>350 m) dari posisi penyekatan kanal disusul oleh karet (193 m), dan radius pembasahan pada bekas terbakar hanya berkisar 138 m atau terendah dibandingkan tipe penggunaan lahan yang lain. Adapun hasil penelitian terhadap karakteristik tanah menunjukkan pada berbagai tutupan lahan yang diamati tergolong jenis lahan gambut hemik dengan kadar serat berkisar 25-40% dan untuk rata-rata kadar air pada lahan sagu mempunyai kadar air tanah tertinggi berkisar antara 85,1 – 88,5 %, diikuti hutan sekunder berkisar 85,7 – 89,7 % dan lahan karet lahan berkisar 85,1 – 88 %. Hasil penelitian menunjukkan bahwa hutan sekunder dan lahan terbakar semakin jauh dari kanal dapat meningkatkan biomassa vegetasi. Namun hal ini tidak terlepas dari sejumlah faktor yang memengaruhi, contohnya pada lahan karet yang menunjukkan keterbalikan. Adapun pertumbuhan diameter tanaman sagu cenderung lebih cepat ketika semakin dekat dari kanal baik pada sisi kiri dan kanan kanal. Pertumbuhan diameter batang sagu (Metroxylon sagu), batang pada tanaman hutan sekunder yang pada hal ini spesies tanaman Geronggang (Cratoxylum arborescens) dan batang karet (Hevea brasiliensis) selama periode tiga tahun mencapai petumbuhan diameter angka tertinggi secara berturut-turut sebesar 29,3 cm, 14,2 cm dan 16,8 cm. Hal ini menunjukkan bahwa fenomena pertumbuhan tanaman dapat bervariasi tergantung pada jenis tanaman dan lingkungan sekitarnya, termasuk akses air, kelembapan, dan karakteristik lingkungan tanah. Pada pembahasan biomassa permodelan alometrik sagu yang juga menjadi keterbaruan dalam penelitian ini didapatkan bahwa bagian batang tanaman memiliki kandungan biomassa tertinggi dibandingkan bagian lain dan hasil penelitian menunjukan bahwa ada hubungan positif antara tinggi pohon sagu dengan nilai biomassa baik pada fase siap panen, fase dewasa dan fase pra-dewasa. Hasil permodelan yang dibagun dengan menggunakan hasil uji persamaan regresi non linear didapatkan persamaan 4 memiliki nilai R2 yang tinggi dibandingkan dengan persamaan lainnya yaitu 0,72 dengan persamaan alometrik biomasa sagu ABG = -6277.13 + 678.666 * Htotal – 15.6168 * Htotal ^ 2. Kata kunci: Gambut, kanal, vegetasi, tinggi muka air tanah, tanahid
dc.language.isoidid
dc.publisherIPB Universityid
dc.titleEfektivitas Restorasi Hidrologi Melalui Penyekatan kanal (Canal Blocking) pada Ekosistem Gambut di Berbagai Tipe Penggunaan Lahanid
dc.title.alternativeThe Effectivity of Hydrology Restoration through Canal Blocking in the Peatland Ecosystem in Different Land-Usesid
dc.typeDissertationid
dc.subject.keywordPeatid
dc.subject.keywordcanalid
dc.subject.keywordvegetationid
dc.subject.keywordgroundwater levelid
dc.subject.keywordsoilid


Files in this item

No Thumbnail [100%x80]

This item appears in the following Collection(s)

Show simple item record