View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Actuaria
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Actuaria
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Sebaran Bivariate Inverse Weibull

      Thumbnail
      View/Open
      Cover (730.5Kb)
      Fullteks (1.103Mb)
      Lampiran (438.8Kb)
      Date
      2024
      Author
      Pratama, Harlen Mayderi
      Setiawaty, Berlian
      Ruhiyat
      Metadata
      Show full item record
      Abstract
      Sebaran baru dapat dibangun dari sebaran lain yang telah ada. Salah satu cara yang umum digunakan adalah menggabungkan dua atau lebih sebaran untuk mendapatkan sebaran baru. Pada karya ilmiah ini akan dibahas suatu sebaran baru yaitu sebaran bivariate inverse Weibull yang dibangun dari dua pasang sebaran inverse Weibull yang saling bebas. Menggunakan definisi sebaran maksimum, fungsi sebaran kumulatif bersama dan fungsi kepekatan peluang bersama dari sebaran bivariate inverse Weibull dapat dirumuskan dari fungsi sebaran inverse Weibull. Pendugaan parameter dilakukan dengan metode penduga kemungkinan maksimum dan metode Newton-Raphson. Pembangkitan serangkaian data dengan jumlah yang berbeda menunjukkan data dengan jumlah besar memberikan dugaan yang lebih akurat bagi parameter.
       
      A new distribution can be built from already existing distributions. One of the common method is compounding two or more distributions to obtain a new one. This paper will discuss a new distribution that is a bivariate inverse Weibull distribution. This new distribution is built from two pairs of independent inverse Weibull distributions. Using the definition of maximum distribution, the joint cumulative distribution function and the joint probability density function of a bivariate inverse Weibull can be formulated from the inverse Weibull distribution function. Parameter estimation was done using the maximum likelihood method and Newton-Raphson method. Generating several sets of data with different amounts pointed out that a large number data gave more accurate estimates for parameters.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/134471
      Collections
      • UT - Actuaria [205]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository