Pemetaan Sebaran dan Kerapatan Mangrove di Teluk Pangpang, Banyuwangi Menggunakan Maximum Likelihood dan Artificial Neural Network
Date
2023Author
Jatie, Cosmas Kevlyn Dalu K
Arhatin, Risti Endriani
Agus, Syamsul Bahri
Metadata
Show full item recordAbstract
Mangrove menjadi ekosistem pesisir terbesar kedua di Indonesia serta
memiliki peranan penting dalam siklus hidup biota laut sebagai nursery ground,
spawning ground dan feeding ground. Penelitian ini bertujuan untuk memetakan
sebaran dan kerapatan mangrove di Teluk Pangpang menggunakan citra Sentinel
2B. Metode Hemispherical Photography digunakan untuk memperoleh data
tutupan kanopi mangrove serta analisis Normalized Difference Vegetation Index
digunakan untuk memetakan sebaran kerapatan mangrove. Hasil uji akurasi 2
klasifikasi menunjukkan bahwa metode artificial neural network menghasilkan
nilai Overall accuracy 92,73% (kappa 0,84) dan lebih baik daripada metode
maximum likelihood dengan nilai Overall accuracy 89,09% (kappa 0,76). Analisis
Normalized Difference Vegetation Index (NDVI) menghasilkan 3 kelas kerapatan
mangrove. Luas yang dihasilkan adalah 925,8 ha dengan mangrove rapat 672,99
ha, mangrove sedang 61,83 ha, dan mangrove jarang 178,75 ha. Pengujian korelasi
data survei tutupan kanopi dengan nilai NDVI didapatkan nilai korelasi (r) sebesar
0,893287 dan nilai determinasi (R2) sebesar 0,797961. The mangrove ecosystem is the second largest coastal ecosystem in
Indonesia, playing a crucial role in the life cycle of marine biota. It serves as a
nursery ground, spawning ground, and feeding ground, making it an essential
component of the marine ecology. This study aimed to map the distribution and
density of the mangroves in Pangpang Bay, utilizing Sentinel 2B imagery. To
gather data on mangrove canopy cover, the Hemispherical Photography method
was employed, while the Normalized Difference Vegetation Index analysis was
utilized to map the mangrove density distribution. The results of the classification
accuracy tests revealed that the artificial neural network method produced an
overall accuracy value of 92.73% (kappa 0.84), surpassing the maximum likelihood
method, which scored an overall accuracy value of 89.09% (kappa 0.76). The
Normalized Difference Vegetation Index (NDVI) analysis yielded 3 classes of
mangrove densities, resulting in a total area of 925.8 ha, with 672.99 ha of dense
mangroves, 61.83 ha of medium mangroves, and 178.75 ha of sparse mangroves. A
correlation analysis of the canopy cover survey data with the NDVI value produced
a correlation value (r) of 0.893287 and a determination value (R2) of 0.797961.
