Show simple item record

dc.contributor.advisorHerdiyeni, Yeni
dc.contributor.authorPutra, Dimas Perdana Christian Kartika
dc.date.accessioned2023-11-07T06:49:59Z
dc.date.available2023-11-07T06:49:59Z
dc.date.issued2010
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/130992
dc.description.abstractThis research proposes Bayesian Classifier to improve image annotation performance on image retrieval. Before being analysed by automatic annotation, descriptions of the image have to be known. Image description is the process of generating descriptions that represent the visual content of images in a certain manner, normally in the form of one or more features. Images are segmented into regions with grid segmentation. Each region are represented by a pre-specifed feature vector. The regions then clustered into a finite set of blobs. The correspondences between the blobs and the words are learned using Statistical Machine Translation and Bayesian Classifier. The experiment result shows that Statistical Machine Translation using Bayesian Classifier can improve precision as compared to Statistical Machine Translation. This method is promising to improve image query result on image retrieval.id
dc.language.isoidid
dc.publisherBogor Agricultural University (IPB)id
dc.subject.ddcMathematics and natural sciencesid
dc.subject.ddcComputer scienceid
dc.titlePeningkatan kinerja pelabelan otomatis citra menggunakan Bayesian Classifier pada temu kembali citraid
dc.typeUndergraduate Thesisid
dc.subject.keywordContent-based image retrievalid
dc.subject.keywordAutomatic annotationid
dc.subject.keywordStatistical machine translationid
dc.subject.keywordBayesian classifierid
dc.subject.keywordLatent semantic indexingid
dc.subject.keywordBogor Agricultural Universityid
dc.subject.keywordInstitut Pertanian Bogorid
dc.subject.keywordIPBid


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record