Pemodelan Dinamika Harga Saham Perbankan Menggunakan Recurrent Neural Network dengan Optimasi Momentum
Date
2023Author
Thani, Rakintsev Velshan
Hardhienata, Hendradi
Kartono, Agus
Metadata
Show full item recordAbstract
Semakin pesatnya perkembangan pasar modal di Indonesia membuat semakin banyak investor bergabung di Bursa Efek Indonesia. Salah satu sektor industri yang banyak diminati investor adalah perbankan, karena memiliki kapitalisasi pasar yang tinggi dan merupakan industri yang penting untuk suatu negara. Oleh karena itu perlu dilakukan penelitian mengenai dinamika harga saham perbankan. Penelitian ini bertujuan menggunakan model machine learning yang dioptimalkan dengan ilmu fisika untuk melakukan pemodelan dan prediksi harga saham empat perusahaan perbankan terbesar di Indonesia berdasarkan kapitalisasi pasar tertinggi. Prediksi harga saham akan menggunakan model Recurrent Neural Network (RNN) menggunakan sel Long Short Term Memory yang dioptimalkan menggunakan momentum. Hasil prediksi pada penelitian ini dievaluasi dengan data aktual menggunakan Mean Absolute Percentage Error (MAPE). Model RNN dengan optimasi momentum memiliki nilai MAPE 1,32% untuk satu data target dan 1,65% model yang melibatkan 15 data target. The rapid development of the stock market in Indonesia has encouraged more investors to join the Indonesia Stock Exchange. The banking industry garners investor interest due to its substantial market capitalization and its significance as a pivotal industry for any nation. Hence, it is necessary to do research on the dynamics of banking stock prices. The objective of this study is to utilize physics- optimized machine learning models for the purpose of modeling and forecasting the stock prices of the top four banking companies in Indonesia based on their highest market capitalization. Stock price prediction will use the Recurrent Neural Network (RNN) using Long Short Term Memory cells which are optimized using momentum. The assessment of prediction outcomes in this research was conducted by comparing it to real-world data using the Mean Absolute Percentage Error (MAPE) as the evaluation metric. The RNN model, enhanced with momentum optimization, yielded a MAPE of 1.32% for a single target data point and 1.65% for a dataset involving 15 target data points.
Collections
- UT - Physics [1230]
