Show simple item record

dc.contributor.advisorSyukur, Muhamad
dc.contributor.advisorTrikoesoemaningtyas
dc.contributor.advisorWidiyono, Wahyu
dc.contributor.authorLestari, Peni
dc.date.accessioned2023-08-18T04:33:22Z
dc.date.available2023-08-18T04:33:22Z
dc.date.issued2023-07-27
dc.identifier.citation[AOAC] the Scientific Association of Dedicated to Analytical Excellent. 2005. Official Methods of Analysis of AOAC International. Ed ke-18 Horwitz W, Latimer WG, editor. AOAC. [CBD] Convention on Biological Diversity. 2018. Capsicum annuum. [diunduh 2023 Jun 15]. Tersedia pada: https://bch.cbd.int/en/. [ITIS] Integrated Taxonomic Information System. 2023. Capsicum annuum var. glabriusculum (Dunal) Heiser & Pickersgill. [diunduh 2023 Jun 15]. Tersedia pada: https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&s earch_value=527045#null. [OECD]. 2006. Capsicum annuum Complex. Di dalam: Consensus Documents on Biology of Crops. hlm. 293–323. [UPOV]. 2015. International Union for the Protection of New Varieties of Plants (Sorghum). Abilgos-Ramos RG, Manaois R V., Morales A V., Mamucod HF. 2015. Quality characteristics and consumer acceptability of salt bread supplemented with chili pepper (Capsicum sp.) leaves. Food Sci. Technol. Res. 21(1):117–123.doi:10.3136/fstr.21.117. Adrianto O. 2018. Analisis Daerah Rawan Kekeringan Lahan Jagung Berdasarkan Iklim Oldeman dan Ketersediaan Air Tanah Nusa Tenggara Timur. Di dalam: Rachma TRN, Oktaviani N, Sabita HN, Suryanegara E, Pujawati I, editor. Seminar Nasional Geomatika. Bogor, Indonesia: Badan Informasi Geospasial. hlm. 1219–1228. Ahmed HGMD, Sajjad M, Li M, Azmat MA, Rizwan M, Maqsood RH, Khan SH. 2019. Selection criteria for drought-tolerant bread wheat genotypes at seedling stage. Sustain. 11(9):1–17.doi:10.3390/su11092584. Ai NS, Torey P. 2013. Karakter morfologi akar sebagai indikator kekurangan air pada tanaman (Root morphological characters as water-deficit indicators in plants) 1). Bioslogos. 3(1):31–39. Amaliah N. 2018. Penentuan Kadar Capsaicin Menggunakan Metode Kromatografi Lapis Tipis (Klt) Pada Cabe Katokkon. JST Jurnal Sains Ter. 4(1):49– 56.doi:10.32487/jst.v4i1.452. Antonio AS, Wiedemann LSM, Junior VFV. 2018. The genus Capsicum : a phytochemical review of bioactive secondary metabolites. RSC Adv. 8:25767–25784.doi:10.1039/C8RA02067A. Anwar M, Shabir H, Wani H, Bhattacharjee S, Burritt DJ, Tran LP. 2016. Drought Stress Tolerance in Plants. Ed ke-1 Volume ke-1. Switzerland: SpringerVerlaag. Arumingtyas EL, Kusnadi J, Sari DRT, Ratih N. 2017. Genetic variability of Indonesian local chili pepper: The facts. Di dalam: AIP Conference Proceedings. Vol. 1908. Asir M, Fattah MA, Wahab A, Riesso AS. 2022. Strategy to Increase Sales of Agricultural Products (Chilli) in Sinjai District. Italienisch. 12(1):841– 850. AuBuchon-Elder T, Coneva V, Goad DM, Allen DK, Kellogg. EA. 2018. Function of the Pedicellate Spikelet and Awn in Sorghum and Related Grasses. bioRxiv. 5135:396473. Balai Penelitian Tanaman Sayuran. 2018a. Cabai Besar Lingga. [diunduh 2021 Feb 28]. Tersedia pada: http://balitsa.litbang.pertanian.go.id/ind/index.php/varietas/cabai/36- halaman/611-cabai-besar-lingga Balai Penelitian Tanaman Sayuran. 2018b. Cabai Besar Varietas Inata Agrihorti. [diunduh 2021 Feb 28]. Tersedia pada: http://balitsa.litbang.pertanian.go.id/ind/index.php/varietas/cabai/36- halaman/692-cabai-besar-varietas-inata-agrihorti Barbosa RI, Junior MM, Joaci de F Luz F. 2010. Morphometric patterns and preferential uses of. Hortic. Bras. 28:477–482.doi:http://10.1590/S0102- 05362010000400017. Barchenger DW, Bosland PW. 2016. Exogenous applications of capsaicin inhibits seed germination of Capsicum annuum. Sci. Hortic. (Amsterdam). 203:29–31.doi:10.1016/j.scienta.2016.03.009. Barchenger DW, Clark RA, Gniffke PA, Ledesma DR, Lin SW, Hanson P, Kumar S. 2018. Stability of yield and yield components of pepper (Capsicum annuum), and evaluation of publicly available predictive meteorological data in east and southeast asia. HortScience. 53(12):1776– 1783.doi:10.21273/HORTSCI13581-18. Basu S, Ramegowda V, Kumar A, Pereira A. 2016. Plant adaptation to drought stress. F1000Research. 5(0):1– 10.doi:10.12688/F1000RESEARCH.7678.1. Boguszewska-mankowska D, Zarzynska K, Nosalewicz A. 2020. Drought Differentially Affects Root System Size and Architecture of Potato Cultivars with Differing Drought tolerance. Am. J. Potato Res. 97:54– 62.doi:https://doi.org/10.1007/s12230-019-09755-2. Borisev M, Krstic B, Gvozdenovic D, Krstic B, Gvozdenovic D. 2012. Photosynthesis and water use efficiency relations to yield of ten pepper varieties ( Capsicum annuum L .). Bulg. J. Agric. Sci. 18(4):589–594. Bosland PW, Baral JB. 2007. “Bhut Jolokia” - The world’s hottest known chile pepper is a putative naturally occurring interspecific hybrid. HortScience. 42(2):222–224.doi:10.21273/hortsci.42.2.222. Bowling M, Gaines M, Petty C. 2003. Effectiveness And Safety of Pepper Spray. Natl. Inst. Justice. April(195739). Brás TA, Seixas J, Carvalhais N, Jagermeyr J. 2021. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ. Res. Lett. 16(6).doi:10.1088/1748-9326/abf004. CABI. 2018. Cpsicum pubescens (Rocoto). CABI Compend..doi:https://doi.org/10.1079/cabicompendium.4740878. Campos H, Trejo C, Peña-Valdivia CB, García-Nava R, Conde-Martínez FV, CruzOrtega MR. 2014. Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering: Delayed restoration of photosynthesis during recovery. Environ. Exp. Bot. 98:56–64.doi:10.1016/j.envexpbot.2013.10.015. Castillioni K, Newman GS, Souza L, Iler AM. 2022. Effects of drought on grassland phenology depend on functional types. New Phytol. 236(4):1558–1571.doi:https://doi.org/10.1111/nph.18462. Chabaane Y, Marques Arce C, Glauser G, Benrey B. 2022. Altered capsaicin levels in domesticated chili pepper varieties affect the interaction between a generalist herbivore and its ectoparasitoid. J. Pest Sci. (2004). 95(2):735– 747.doi:10.1007/s10340-021-01399-8. Cirillo V, D’Amelia V, Esposito M, Amitrano C, Carillo P, Carputo D, Maggio A. 2021. Anthocyanins are key regulators of drought stress tolerance in tobacco. Biology (Basel). 10(2):1–15.doi:10.3390/biology10020139. Civitello L. 2008. Cuisine and Culture. A history of food and people. 2nd edition. Hoboken, New Jersey, Canada: John Wiley and Sons, Inc. Comas LH, Becker SR, Cruz VM V., Byrne PF, Dierig DA. 2013. Root traits contributing to plant productivity under drought. Front. Plant Sci. 4(NOV):1–16.doi:10.3389/fpls.2013.00442. Conner JK. 2016. Artificial Selection. Encycl. Evol. Biol. 1:107– 113.doi:10.1016/B978-0-12-800049-6.00053-6. Culliney K. 2022. Kimchi to cosmetics: Korean chili pepper promising for skin radiance, says L’Occitane. IFSCC Congr. 22 London. Cunha CT, Fernandes VB, Vieira IGP, Mendes FNP. 2022. Determination of nordihydrocapsaicin, capsaicin, dihydrocapsaicin, and pungency levels in pepper sauces by RP-HPLC: Capsaicinoid levels and pungency classification of commercial pepper sauces. Int. Food Res. J. 29(2):265– 273.doi:10.47836/ifrj.29.2.05. Darmadi D, Junaedi A, Sopandie D, Lubis I. 2021. Water-efficient rice performances under drought stress conditions. Agrfood. 6(July):838– 863.doi:10.3934/agrfood.2021051. Deptan.go.id D hortikultura. 2021. Database varietas terdaftar hortikultura. Dikšaitytė A, Viršilė A, Žaltauskaitė J, Januškaitienė I, Juozapaitienė G. 2019. Growth and photosynthetic responses in Brassica napus differ during stress and recovery periods when exposed to combined heat, drought and elevated CO2. Plant Physiol. Biochem. 142(June):59– 72.doi:10.1016/j.plaphy.2019.06.026. Djarwaningsih T. 1986. Jenis-jenis Capsicum L. (Solanaceae) di Indonesia. Ber. Biol. 3(5):3–6. Djarwaningsih T. 2005. Capsicum sp. (Cabai): Asal, Persebaran, dan Nilai Ekonomi Capsicum sp (Chilli). Biodiversitas. 6(4):292–296. Martins KC, Pereira TNS, Souza SAM, Rodriguess R, do Amaral Junior AT. 2015. Crossability and evaluation of incompatibility barriers in crosses between Crossability and evaluation of incompatibility barriers in crosses. Crop Breed. Appl. Biotechnol. 15:139–145.doi:10.1590/1984- 70332015v15n3a25. Eich E. 2008. Phenylalanine-derived Metabolites /Phenylpropanoids. Di dalam: Solanaceae and Convolvulaceae: Secondary Metabolite. Berlin: Springer-Verlag. hlm. 271–342. Erickson AN, Markhart AH. 2002. Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant, Cell Environ. 25(1):123–130.doi:10.1046/j.0016- 8025.2001.00807.x. Fadholi A, Supriatin D. 2016. Sistem Pola Tanam Di Wilayah Priangan Berdasakan Klasifikasi Iklim Oldeman. J. Geogr. Gea. 12(2):56– 65.doi:10.17509/gea.v12i2.1788. Fallah F, Kahrizi D, Rezaeizad A, Zebarjadi A, Zarei L. 2023. Assessment of genetic variability and genetic parameters of morphological and agrophysiological traits in Camelina sativa ( L .). Turkish J. Agric. For. 47(2). Fang Y, Xiong L. 2015. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell. Mol. Life Sci. 72(4):673–689.doi:10.1007/S00018-014-1767-0/METRICS. Fernandez GC. 1992. Effective Selection Criteria for Assessing Plant Stress Tolerance. Di dalam: Kuo CG, editor. International Symposium on Adaptation of Food Crops to Temperature and Water Stress. Shanhua, Taiwan AVRDC: World Vegetable Organization. hlm. 257–270. Finahari N, Budi KP, Putra TD. 2019. Potensi Sprayer Otomatis sebagai Solusi Masalah Penyiraman Tanaman untuk Petani Cabe. JATI EMAS (Jurnal Apl. Tek. dan Pengabdi. Masyarakat). 3(1):19.doi:10.36339/je.v3i1.184. Galdon-Armero J, Fullana-Pericas M, Mulet PA, Conesa MA, Martin C, Galmes J. 2018. The ratio of trichomes to stomata is associated with water use efficiency in Solanum lycopersicum (tomato). Plant J. 96:607– 619.doi:10.1111/tpj.14055. González-Zamora A, Sierra-Campos E, Luna-Ortega JG, Pérez-Morales R, Ortiz JCR, García-Hernández JL. 2013. Characterization of different Capsicum varieties by evaluation of their Capsaicinoid content by high performance liquid chromatography, determination of pungency and effect of high temperature. Molecules. 18(11):13471– 13486.doi:10.3390/molecules181113471. Goto K, Yabuta S, Ssenyonga P, Tamaru S, Sakagami JI. 2021. Response of leaf water potential, stomatal conductance and chlorophyll content under different levels of soil water, air vapor pressure deficit and solar radiation in chili pepper (Capsicum chinense). Sci. Hortic. (Amsterdam). 281(December 2020):109943.doi:10.1016/j.scienta.2021.109943. Guzmán I, Bosland PW. 2017. Sensory properties of chile pepper heat – and its importance to food quality and cultural preference. Appetite. 117:186– 190.doi:10.1016/j.appet.2017.06.026. Guzmán I, Bosland PW. 2018. A Matter of Taste: Capsaicinoid Diversity in Chile Peppers and the Importance to Human Food Preference. Di dalam: Mozsik G, editor. Capsaicin and its human therapeutic development. Intechopen. Hamim. 2005. Respon Pertumbuhan Spesies C3 dan C4 terhadap Cekaman Kekeringan dan Konsentrasi CO 2 tinggi. Biosfera. 22(3):105–113. Hamim. 2012. Peranan dan Fungsi Air sebagai Penyusun Tubuh Tumbuhan. Di dalam: Fisiologi Tumbuhan. Vol. 1. Bogor, Indonesia: Institut Pertanian Bogor. hlm. 1–70. Harpenas A, Dermawan R. 2011. Budidaya Cabai Unggul. Jakarta: Penebar Swadaya. Hermanto R, Syukur M, . W. 2017. Pendugaan Ragam Genetik dan Heritabilitas Karakter Hasil dan Komponen Hasil Tomat (Lycopersicum esculentum Mill.) di Dua Lokasi. J. Hortik. Indones. 8(1):31.doi:10.29244/jhi.8.1.31- 38.Hu WH, Xiao YA, Zeng JJ, Hu XH, Science L. 2010. Photosynthesis , respiration and antioxidant enzymes in pepper leaves under drought and heat stresses. 54(4):761–765. Ichwan N, Meliala FS, Ezra MF, Nainggolan MB, Nasution DLS, Daulay SB. 2022. Water Consumption, Growth, Yield and Water Productivity for Pepper Plant. Di dalam: IOP Conference Series: Earth and Environmental Science. Vol. 977. Ilyas M, Nisar M, Khan N, Hazrat A, Khan AH, Hayat K, Fahad S, Khan A, Ullah A. 2021. Drought tolerance Strategies in Plants: A Mechanistic Approach. J. Plant Growth Regul. 40(3):926–944.doi:10.1007/S00344- 020-10174-5. InaAgrimap. 2020. sentra cabai. Kementeri. Pertan. Republik Indonesia. InaBIF. 2020. Indonesia Biodiversity Information Facility. Izzati F. 2018. Capsaicinoid dari Capsicum sp.p dan penggunaannya sebagai riot control agent. BioTrends. 9(2). Jaimez RE, Vielma O, Rada F, García-Núñez C. 2000. Effects of water deficit on the dynamics of flowering and fruit production in Capsicum chinense jacq in a tropical semiarid region of Venezuela. J. Agron. Crop Sci. 185(2):113–119.doi:10.1046/j.1439-037X.2000.00414.x. Jiang C, Johkan M, Hohjo M, Tsukagoshi S, Maturo T. 2017. A correlation analysis on chlorophyll content and SPAD value in tomato leaves. HortResearch. 71(71):37–42.doi:http://doi.org/10.20776/S18808824-71-P37. Johnson W, Robinson H. 1955. Genotypic and phenotypic correlations in soybeans and their implications in selection. Agron. J. 47:477–482. Kazai P, Noulas C, Khah E, Vlachostergios D. 2019. Yield and seed quality parameters of common bean cultivars grown under water and heat stress field conditions. 4 (November 2018): 285-302. doi:10.3934/agrfood.2019.2.285. Khan MAI, Farooque AM, Haque MA, Rahim MA, Hoque MA. 2008. Effects of water stress at various growth stages on the physio-morphological characters and yield in chilli. Bangladesh J. Agric. Res. 33(3):353– 362.doi:10.3329/bjar.v33i3.1594. Kirda C. 2002. Deficit irrigation scheduling based on plant growth stages showing water stress tolerance. Koch G, Gaelle R, Dauzat M, Bediee A, Baldazzi V, Bertin N, Guedon Y, Granier C. 2019. Leaf Production and Expansion : A Generalized Response to Drought Stresses from Cells to Whole Leaf Bobot kering — A Case Study in the Tomato Compound Leaf. Plants. 8(409):1– 17.doi:10.3390/plants8100409. Kopta T, Sekara A, Pokluda R, Ferby V, Caruso G. 2020. Screening of Chilli Pepper Genotypes as a Source of Capsaicinoid and Antioxidants under Conditions of Simulated Drought Stress. Plants. 9(364).doi:10.3390/plants9030364. Kumar PA, Reddy NN, Lakshmi NJ. 2017. PEG Induced Screening for Drought tolerance in Tomato Genotypes. Int. J. Curr. Microbiol. Appl. Sci. 6(7):168–181.doi:10.20546/ijcmas.2017.607.020. Kumar R, Solankey SS, Singh M. 2012. Breeding for drought tolerance in vegetables. Veg. Sci. 39(1):1–15.Kusumo I, Septiadi D. 2016. Tipe Iklim Oldeman 2011-2100 Berdasarkan Skenario RCP 4.5 dan RCP 8.5 di Wilayah Sumatera Selatan. J. Meteorol. Klimatologi dan Geofis. 3(3):26–36. Lakshmi Sahitya U, Krishna MSR, Sri Deepthi R, Shiva Prasad G, Peda Kasim D. 2018. Seed Antioxidants Interplay with Drought Stress Tolerance Indices in Chilli (Capsicum annuum L) Seedlings. Biomed Res. Int. 1605096.doi:10.1155/2018/1605096. Las I, Nursyamsi D, Agus F, Husen E, Sutriadi T, Wiratno, Syahbuddin H, Jamil A, Ritung S, Mulyani A, et al. 2014. Road Map Penelitian dan Pengembangan Lahan Kering. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian. Lawrence TJ, Vilbig JM, Kangogo G, Fèvre EM, Deem SL, Gluecks I, Sagan V, Shacham E. 2023. Shifting climate zones and expanding tropical and arid climate regions across Kenya (1980–2020). Reg. Environ. Chang. 23(2):1–13.doi:10.1007/s10113-023-02055-w. Lestari AP. 2016. Efektivitas metode dan lingkungan seleksi untuk menghasilkan galur harapan padi adaptif terhadap kondisi nitrogen suboptimum angelita puji lestari. IPB University. Lestari P. 2010. Praseleksi Sifat Resistensi Tanaman Handeuleum [Graptophyllum pictum (L .) Griff .] terhadap Doleschallia bisaltide Cramer (Lepidoptera: Nymphalidae). IPB University. Lestari P. 2021. Not just a spice, this is another function of capsaicin in chilies during a pandemic. Biotrends. 12(1):10–15. Liyanage DK, Chathuranga I, Mori BA, Thilakarathna MS. 2022. A Simple, SemiAutomated, Gravimetric Method to Simulate Drought Stress on Plants. Agronomy. 12(2).doi:10.3390/agronomy12020349. Lo Piccolo E, Landi M, Pellegrini E, Agati G, Giordano C, Giordani T, Lorenzini G, Malorgio F, Massai R, Nali C, et al. 2018. Multiple consequences induced by epidermally-located anthocyanins in young, mature and senescent leaves of prunus. Front. Plant Sci. 9(July):1– 16.doi:10.3389/fpls.2018.00917. Lopez FB, Barclay GF. 2017. Plant Anatomy and Physiology. Di dalam: Badal S, Delgoda R, editor. Pharmacognosy: Fundamentals, Applications and Strategy. [internet] Tokyo: Academic Press. hlm. 45–60. Lozada DN, Bosland PW, Barchenger DW, Haghshenas-Jaryani M, Sanogo S, Walker S. 2022. Chile Pepper (Capsicum) Breeding and Improvement in the “Multi-Omics” Era. Front. Plant Sci. 13(May).doi:10.3389/fpls.2022.879182. Lu Y, Ma D, Chen X, Zhang J. 2018. A simple method for estimating field crop evapotranspiration from pot experiments. Water (Switzerland). 10(12).doi:10.3390/w10121823. Luo L, Xia H, Lu BR. 2019. Editorial: Crop breeding for drought resistance. Front. Plant Sci. 10(March):1–2.doi:10.3389/fpls.2019.00314. Lush J. 1949. Heritability of quantitative characters in farm animals. Hereditas. 35:356–375. Mahmood T, Rana RM, Ahmar S, Saeed S, Gulzar A, Khan MA, Wattoo FM, Wang X, Branca F, Mora-poblete F, et al. 2021. Effect of Drought Stress on Capsaicin and Antioxidant Contents in Pepper Genotypes at Reproductive Stage. Plants. 10(1286).doi:https:// doi.org/10.3390/plants10071286. Malika LY, Deshabandu KSHT, De Costa WAJM, Ekanayake S, Herath S, Weerakoon WMW. 2019. Physiological traits determining tolerance to intermittent drought in the Capsicum annuum complex. Sci. Hortic. (Amsterdam). 246(April 2018):21–33.doi:10.1016/j.scienta.2018.10.047. Mall M, Kumar R, Akhtar MQ. 2021. Horticultural crops and abiotic stress challenges. Di dalam: Kumar A, Rai AC, Rai A, Rai KK, Rai VP, editor. Stress Tolerance in Horticultural Crops: Challenges and Mitigation Strategies. [internet] Ed ke-1 Woodhead Publishing. hlm. 1–19. Mardaninejad S, Zareabyaneh H, Tabatabaei SH, Pessarakli M, Mohamadkhani A. 2017. Root water uptake of pepper plants (Capsicum annuum L.) under deficit irrigation system. J. Plant Nutr. 40(11):1569– 1579.doi:10.1080/01904167.2016.1263334. Mardi CT, Trikoesoemaningtyas T, Wahyu Y. 2022. Keragaan dan Keragaman Genetik Genotipe-genotipe F2:3 Gandum (Triticum aestivum L.) di Dataran Tinggi Indonesia. J. Agron. Indones. (Indonesian J. Agron. 50(1):33–40.doi:10.24831/jai.v50i1.37104. Martinez E., Rey B., Fandino M, Cancela J. 2013. Comparison of Two Techniques for Measuring Leaf Water Potential in Vitis vinivera Var Albarino. Cienc. Tec Vitiv. 28(1):29–41. Martins KC, Pereira TNS, Souza SAM, Rodriguess R, do Amaral Junior AT. 2015. Crossability and evaluation of incompatibility barriers in crosses between Crossability and evaluation of incompatibility barriers in crosses. Crop Breed. Appl. Biotechnol. 15:139–145.doi:10.1590/1984- 70332015v15n3a25. Mawasid FP, Syukur M, Trikoesoemaningtyas. 2019. Epistatic gene control on the yield of tomato at medium elevation in the tropical agroecosystem. Biodiversitas. 20(7):1880–1886.doi:10.13057/biodiv/d200713. Meghvansi MK, Siddiqui S, Khan MH, Gupta VK, Vairale MG, Gogoi HK, Singh L. 2010. Naga chilli: A potential source of Capsaicinoid with broadspectrum ethnopharmacological applications. J. Ethnopharmacol. 132(1):1–14.doi:10.1016/j.jep.2010.08.034. Meher, Shivakrishna P, Ashok Reddy K, Manohar Rao D. 2018. Effect of PEG6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi J. Biol. Sci. 25(2):285–289.doi:10.1016/j.sjbs.2017.04.008. Menichini Federica, Tundis R, Bonesi M, Loizzo MR, Conforti F, Statti G, De Cindio B, Houghton PJ, Menichini Francesco. 2009. The influence of fruit ripening on the phytochemical content and biological activity of Capsicum chinense Jacq. cv Habanero. Food Chem. 114(2):553– 560.doi:10.1016/j.foodchem.2008.09.086. Millah Z, Syukur M, Sobir, Ardie SW. 2021. Selection Trait for Chili Pepper Drought tolerance at Germination Stage Using Polyethylene Glycol 6000 and diversity among 22 Chili Pepper Genotypes. Russ. J. Agric. Socio-Economic Sci. 118(10):240–249.doi:DOI 10.18551/rjoas.2021- 10.27.Millah Z, Syukur M, Sobir. 2019. Metabolomics Profiling of Chili Pepper (Capsicum annuum L.) Tolerance to Drought at Vegetative Stage. Di dalam: Indonesia Breeder Award dan Seminar nasional. bogor. hlm. 54. Millah Z. 2021. Analisis Genetik dan Studi Metabolomik Toleransi Pengairan Terbatas Pada Tanaman Cabai (Capsicum annuum L.). IPB University. Ministry of Agriculture I. 2018. Petunjuk teknis pengamatan karakteristik tanaman cabai. :65. Mohammadi R. 2018. Breeding for increased drought tolerance in wheat: A review. Crop Pasture Sci. 69(3):223–241.doi:10.1071/CP17387. Molla R, Ahmed I, Ara R, Hassan L, Rohman M. 2019. Screening of Chilli ( Capsicum annum L .) Genotypes for Drought Tolerant at Seedling Emergence Stage. J. Plant Sci. 7(4):76– 85.doi:10.11648/j.jps.20190704.12. Mursalova J, Akparov Z, Ojaghi J, Eldarov M, Belen S, Gummadov N, Morgounov A. 2015. Evaluation of drought tolerance of winter bread wheat genotypes under drip irrigation and rain-fed conditions. Turkish J. Agric. For. 39(5):817–824.doi:10.3906/tar-1407-152. Nadi MS, Fikri F, Thohawi M, Purnama E. 2020. Determination of Capsaicin Levels in Capsicum annum Linn Ethanolic Extract using Thin Layer Chromatography Analysis. Sys Rev Pharm. 11(6):661– 664.doi:10.31838/srp.2020.6.98. Nichelmann L, Bilger W. 2017. Quantification of light screening by anthocyanins in leaves of Berberis thunbergii. Planta. 246(6):1069– 1082.doi:10.1007/s00425-017-2752-2. Nuraeni I, Rostinawati T. 2018. Review: perkembangan produksi hasil metabolisme sekunder capsaicin dengan berbagai metode in vitro. Farmaka. 16(1):231–239. Oktaviani E, Suprayogi. 2022. Genetik Parameters, Inter-relationship Among AgronomicTraits and Dehulled Rice Morpho-Biochemical Profile of Promising Black Rice x Mentik Wangi Lines. HAYATI J. Biosci. 29(6):834–844.doi:10.4308/hjb.29.6.834-844. Okunlola GO, Akinwale RO, Adelusi AA. 2016. Proline and soluble sugars accumulation in three pepper species ( Capsicum sp.p ) in response to water stress imposed at different stages of growth. Sci. Cold Arid Reg. 8(3):205–211.doi:10.3724/SP.J.1226.2016.00205.Proline. Okunlola GO, Olatunji OA, Akinwale RO, Tariq A, Adelusi AA. 2017. Physiological response of the three most cultivated pepper species (Capsicum spp.) in Africa to drought stress imposed at three stages of growth and development. Sci. Hortic. (Amsterdam). 224(July 2017):198– 205.doi:10.1016/j.scienta.2017.06.020. Palma JM, Sevilla F, Jiménez A, Del Río LA, Corpas FJ, Álvarez De Morales P, Camejo DM. 2015. Physiology of pepper fruit and the metabolism of antioxidants: Chloroplasts, mitochondria and peroxisomes. Ann. Bot. 116(4):627–636.doi:10.1093/aob/mcv121. Pamirelli R, Rao MS. 2021. Breeding for Drought Resistance. Di dalam: Cheng YL, Lee C-Y, Huang Y-L, Buckner CA, Lafrenie RM, Dénommée JA, Caswell JM, Want DA, Gan GG, Leong YC, et al., editor. Plant Breeding-Current and Future Views. Vol. 11. Intechopen. hlm. 1–11.Passioura JB. 2012. Phenotyping for drought tolerance in grain crops : when is it useful to breeders ? Funct. Plant Biol. 39:851– 859.doi:http://dx.doi.org/10.1071/FP12079. Penella C, Calatayud A. 2018. Pepper Crop under Climate Change : Grafting as an Environmental Friendly Strategy. Di dalam: Climate Resilient Agriculture. Strategies and Perspectives. hlm. 129–155. Phimchan P, Techawongstien S, Chanthai S, Bosland PW. 2012. Impact of Drought Stress on the Accumulation of Capsaicinoid in Capsicum Cultivars with Different Initial Capsaicinoid Levels. Hortscience. 47(9):1204–1209. Prasetia T, Partini P. 2019. Analisis Preferensi Konsumen Terhadap Cabai Merah di Kecamatan Tembilahan. J. Agribisnis Unisi. 8(1):26–35. Prasetyo R. 2014. Pemanfaatan Berbagai Sumber Pupuk Kandang sebagai Sumber N dalam Budidaya Cabai Merah ( Capsicum annum L .) di Tanah Berpasir. Planta Trop. 2(2):125–132.doi:10.18196/pt.2014.032.125-132. Pratiwi A, Sugianto S. 2017. The Effect of Water Stress on Growth and Capsaicin Content of Cayenne Pepper (Capsicum frutescens L). J. Appl. Environ. Biol. Sci. 7(6):76–80.doi:10.1055/s-2007-969622. Putri FD, , S, Syukur M, Maharijaya DA. 2017. Pengembangan Kriteria Seleksi untuk Perakitan Terung (Solanum melongena L.) Berdaya Hasil Tinggi. J. Agron. Indones. (Indonesian J. Agron. 45(2):182.doi:10.24831/jai.v45i2.13077. Rathnayaka MSMBR, Minami M, Nemoto K, Prabandaka SS, Matsushima K. 2021. Relationship between water supply and sugar and Capsaicinoid contents in fruit of Chili pepper (Capsicum annuum L.). Hortic. J. 90(1):58– 67.doi:10.2503/hortj.UTD-217. Richards RA. 1996. Defining selection criteria to improve yield under drought. Di dalam: Belhassen E, editor. Drought tolerance in Higher Plants: Genetikal, Physiological and Molecular Biological Analysis. Vol. 20. Springer, Dordrecht. hlm. 157–166. Riti E, Syukur M, Maharijaya A, Hidayat P. 2018. Keragaman Genetik 19 Genotipe Cabai Rawit Merah ( Capsicum frutescens ) serta Ketahanannya terhadap Kutu Daun ( Aphis gossypii ) Genetik Variability of Nineteen Birds Eye Chili Genotypes and Their Resistance to Melon Aphids ( Aphis gossypii ). J. Agron. Indones. 46(3):290–297. Ritonga AW, Chozin MA, Syukur M, Maharijaya A. 2018. Short Communication : Genetic variability , heritability , correlation , and path analysis in tomato ( Solanum lycopersicum ) under shading condition. Biodiversitas. 19(4):1527–1531.doi:10.13057/biodiv/d190445. Ritonga AW, Syukur M, Yunianti R, Sobir S. 2018. Assessment of natural crosspollination levels in chili pepper (Capsicum annuum L.). Di dalam: IOP Conference Series: Earth and Environmental Science. Vol. 196. Rosmaina R, Mulyadi D, Elfianis R, Zulfahmi. 2020. Keragaman genetik mutan m2 cabai merah keriting (Capsicum annuum). J. Agroteknologi. 10(2):92– 101.doi:10.24014/ja.v10i2.8780. Rosmaina R, Parjanto P, Sobir S, Yunus A. 2019. Screening of Capsicum annuum L. Genotypes for Drought tolerance Based on Drought tolerance Indices. SABRAO J. Breed. Genet. 51(3):205–224. Rosmaina R, Sobir S, Parjanto P, Yunus A. 2019. Korelasi dan Analisis Lintas Menurut Klasifikasi Schmidt-Ferguson dan Oldeman di Kabupaten Ponorogo. J. Sumber Daya Alam dan Lingkung. 1(1):51–56. Showemimo FA, Olarewaju JD. 2007. Drought tolerance indices in Sweet Pepper. Int. J. Plant Breed. Genet. 1(1):29–33. Sims DA, Gamon JA. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species , leaf structures and developmental stages. Remote Sens. Environ. 81:337–354. Sivasubramanian, S Madhavamenon P. 1949. Genotypic and Phenotypic Variability in Rice. Madras Agric. J. 60(9–13):1093–1096. Slama I, Ghnaya T, Hessini K, Messedi D, Savouré A, Abdelly C. 2007. Comparative study of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. Environ. Exp. Bot. 61(1):10–17.doi:10.1016/j.envexpbot.2007.02.004. Smith PG, Heiser CB. 1951. Taxonomic and Genetic Studies on the Cultivated Peppers, Capsicum annuum L. and C. frutescens L. Am. J. Bot. 38(5):362.doi:10.2307/2437824. Sofyanti A. 2020. Anti Gagal, Begini Cara Tanam Cabai di Musim Kemarau. News. Trubus.Id. Sopandie D. 2013. Fisiologi adaptasi tanaman terhadap cekaman abiotik pada agroekosistem tropika. bogor: IPB Press. Sumarna A. 1998. Irigasi Tetes pada Budidaya Cabai. Bandung: Balai Penelitian Tanaman Sayuran. Pusat Penelitian dan Pengembangan hortikultura. Penelitian dan Pengembagan Pertanian. Sumpena U. 2013. Penetapan kadar Capsaicin beberapa jenis cabe (Capsicum sp.) di Indonesia. Mediagro. 9(2):9–16. Sung Y, Chang YY, Ting NL. 2005. Capsaicin biosynthesis in water-stressed hot pepper fruits. Bot. Bull. Acad. Sin. 46(1):35– 42.doi:10.7016/BBAS.200501.0035. Supriadi DR, Susila AD. 2018. Penetapan Kebutuhan Air Tanaman Cabai Merah ( Capsicum annuum L .) dan Cabai Rawit ( Capsicum frutescens L .). J. Hortik. Indones. 9(April):38–46.doi:10.29244/jhi.9.1.38-46. Sura FL, Limbongan YL, Vonnisye. 2018. Analisis Persilangan Dialel pada Tanaman Cabai (Capsicum annuum). AgroSainT. 9(2):92–97. Suwarti, Ghulamahdi M, Sopandie D, Trikoesoemaningtyas T, Sulistyono E, Azrai M. 2022. Secondary trait and index selectoin determination for maize genotype selection in acidic tidal swamp environment. BIODIVERSITAS. 23(8):4169–4179.doi:https://doi.org/10.13057/biodiv/d230839. Syukur M, Sujiprihati S, Siregar A. 2010. Pendugaan Parameter Genetik Beberapa Karakter Agronomi Cabai F4 dan Evaluasi Daya Hasilnya menggunakan Rancangan Perbesaran (Augmented Design). Agrotropika. 15(1):9–16. Syukur M, Sujiprihati S, Yuniati R, Nida K. 2010. Pendugaan komponen ragam, heritabilitas dan korelasi untuk menentukan kriteria seleksi cabai (Capsicum annuum L) populasi F5. J. Hort Indones.. 1(2):74–80. Syukur M, Yunianti R, Dermawan R. 2017. Budidaya cabai panen cabai setiap hari. Penebar Swadaya. Taufik M, Setiawan BI. 2012. Interpretation of Soil Water Content into Dryness Index: Implication for Forest Fire Management. J. Manaj. Hutan Trop. (Journal Trop. For. Manag). 18(1):31–38.doi:10.7226/jtfm.18.1.31 Tezara W, Martínez D, Rengifo E, Herrera A. 2003. Photosynthetic responses of the tropical spiny shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray. Ann. Bot. 92(6):757– 765.doi:10.1093/aob/mcg199. Trikoesoemaningtyas T, Natawijaya A, Yamin M, Mardiana Y, Ashar JR, Nur A, Wahyu Y. 2017. Shuttle Breeding for Improvement of Wheat Adaptation to Tropical Agroecosystem. Di dalam: Proceedings of PERIPI 2017. hlm. 209–215. Undang, Syukur M, Sobir. 2015. Identifikasi Spesies Cabai Rawit ( Capsicum spp .) Berdasarkan Daya Silang dan Karakter Morfologi Identification of Capsicum Species Based on Crossability and Morphological Characters. J. Agron. Indones. 43(2):118–125. UPOV. 2015. International Union for the Protection of New Varieties of Plants (Sorghum). Usman MG, Rafii MY, Ismail MR, Malek MA, Latif MA. 2014. Heritability and Genetic Advance among Chili Pepper Genotypes for Heat Tolerance and Morphophysiological Characteristics. Sci. World J. 2014(308042).doi:10.1155/2014/308042. Vikas PK, Sukirtee. 2019. Role of Water in Relation to Plant Growth: an integrated water management approach. Di dalam: Rawat AK, Tripathi UK, editor. Advances in Agronomy. Vol 7. New Delhi: AkiNik Publications. hlm. 131. Vos J. 1995. Integrated Crop Management of Hot Pepper ( Capsicum spp .) in Tropical Lowlands. Den Haag, Belanda: Wageningen University and Research. Wahyuni Y, Ballester A-R, Sudarmonowati E, Bino RJ, Bovy AG. 2011. Metabolite biodiversity in pepper ( Capsicum ) fruits of thirty-two diverse accessions : Variation in. Phytochemistry. Phytochem. 72:1358– 1370.doi:10.1016/j.phytochem.2011.03.016. Wahyuni. 2014. Breeding for pepper fruit quality : A genetical metabolomics approach. Wageningen University and Research Centre. Widiyono W, Nugroho S, Rachmat A, Syarif F, Lestari P, Hidayati N. 2020. Drought tolerant screening of 20 indonesian sorghum genotypes through leaf water potential measurements under water stress. Di dalam: IOP Conference Series: Earth and Environmental Science. Vol. 439. hlm. 0– 11. Widiyono W, Nugroho S. 2023. Physiological Characteristics to Indicate Water Use Efficiency and Drought tolerance of 30 Indonesian Sorghum [Sorghum bicolor (L.) Moench] Accessions. HAYATI J. Biosci. 30(1):171– 181.doi:10.4308/hjb.30.1.171-181. Widiyono, Hidayati. 2005. Periode Kritis Tanaman Cabai Merah Besar (Capsicum annuum L. var Long Chilli) pada perlakuan cekaman air. J. Biol. Indones. 3(9):389–396. Widiyono. 2016. Irrigation planning for organic vegetable development of familia solanaceae in banyumulek west nusa tenggara techno park. J. Teknol. Indones. 39(2):35–42. Widuri LI, Lakitan B, Hasmeda M, Sodikin E, Wijaya A, Meihana M, Kartika, Siaga E. 2017. Relative leaf expansion rate and other leaf-related indicators for detection of drought stress in chili pepper (“Capsicum annuum” L.). Aust. J. Crop Sci. 11(12):1617–1625. Widuri LI, Lakitan B, Sakagami J, Yabuta S, Kartika K, Siaga E. 2020. Short-term drought exposure decelerated growth and photosynthetic activities in chili pepper (Capsicum annuum L.). Ann. Agric. Sci. 65(2):149– 158.doi:10.1016/J.AOAS.2020.09.002. Wijaya C, Harda M, Rana B. 2020. Diversity and Potency of Capsicum spp. grown in indonesia. Intechopen. Winarseh Y. 2018. Seleksi In Vitro Beberapa Varietas Tanaman Cabai Rawit ( Capsicum frutescens L .) dengan Menggunakan Polietilen Glikol ( PEG 6000 ) Terhadap Kondisi Cekaman Kekeringan. Tesis. Universitas Sumatera Utara. Wirnas D, Oktanti N, Rahmi HN, Andriani D, Faturrahman, Rini EP, Marwiyah S, Trikoesoemaningtyas, Sopandie D. 2021. Genetic analysis for designing an ideotype of high-yielding sorghum based on existing lines performance. Biodiversitas. 22(12):5286– 5292.doi:10.13057/biodiv/d221208. Wirnas D, Widodo I, Sopandie D. 2006. Pemilihan Karakter Agronomi untuk Menyusun Indeks Seleksi pada 11 Populasi Kedelai Generasi F6 Selection of Agronomic Characters to Construct Selection Index on 11 Soybean Populations. 24(34):19–24. Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA. 2008. Breeding for abiotic stresses for sustainable agriculture. Philos. Trans. R. Soc. B Biol. Sci. 363(1492):703–716.doi:10.1098/rstb.2007.2179. Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, Prasanna BM, Olsen MS. 2017. Enhancing genetic gain in the era of molecular breeding. J. Exp. Bot. 68(11):2641–2666.doi:10.1093/jxb/erx135. Xu Y, Liu X, Fu J, Wang H, Wang J, Huang C, Prasanna BM, Olsen MS, Wang G, Zhang A. 2020. Enhancing Genetic Gain through Genomic Selection: From Livestock to Plants. CellPress Partn. J. 1(1):1– 21.doi:10.1016/j.xplc.2019.100005. Yamamoto S, Djarwaningsih T, Wiriadinata H. 2016. Distribution and Cultivation Practices of Capsicum pubescens on the Islands of Java, Sumatra, and Sulawesi, Indonesia. J. Isl. Stud. 17(1):67–87.doi:10.5995/jis.17.1.67. Yamamoto SY, Jarwaningsih TD, Iriadinata HW. 2014. History and Distribution of Capsicum chinense in Indonesia. Trop. Agric. Dev. 58(3):94– 101.doi:10.11248/jsta.58.94. Yamin M, Efendi D, Trikoesoemaningtyas T. 2016. Pendugaan Parameter Genetik Populasi F3 dan F4 Tanaman Gandum Persilangan Oasis x HP1744. J. Penelit. Pertan. Tanam. Pangan. 34(3):237.doi:10.21082/jpptp.v34n3.2015.p237-245. Yenni, Ibrahim MH, Nulit R, Sakimin SZ. 2022. Influence of drought stress on growth , biochemical changes and leaf gas exchange of strawberry ( Fragaria × ananassa Duch .) in Indonesia. 7(December 2021):37– 60.doi:10.3934/agrfood.2022003. Yenny RF, Rostini N, Hersanti, Anas. 2019. Correlation between Fruit Characters with Capsaicin Content in F2 Population of Chili. IOP Conf. Ser. Earth Environ. Sci. 334(1).doi:10.1088/1755-1315/334/1/012017. Young JK, Shanmugasundara S, Song JY, Ho KP, Moon SP. 2001. A Simple Method of Seedling Screening for Drought tolerance in Soybean. Korean J. Crop Sci. 46(4):284–288. Yusniwati, Aswidinnoor H, Hendrastuti S, Santoso D. 2008. pengaruh cekaman kekeringan terhadap pertumbuhan, hasil, dan kandungan prolina daun cabai. Agrista. 12(1):19–27. Zewdie Y, Bosland PW. 2000. Capsaicinoid inheritance in an interspecific hybridization of Capsicum annuum x C. chinense. J. Am. Soc. Hortic. Sci. 125(4):448–453.doi:10.21273/jashs.125.4.448. Zhang Z, Zhao S, Liu G, Huang Z, Cao Z. 2016. Discovery of putative capsaicin biosynthetic genes by RNA-Seq and digital gene expression analysis of pepper. Nat. Publ. Gr.(February).doi:10.1038/srep34121.id
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/124038
dc.description.abstractCabai dan capsaicinoid dalam buahnya memiliki nilai strategis sebagai bahan baku berbagai industri. Meningkatkan hasil dan kualitas cabai di lingkungan dengan air terbatas merupakan salah satu tujuan utama pemuliaan tanaman cabai untuk menghadapi tantangan perubahan iklim. Penentuan lingkungan seleksi dan kriteria seleksi sifat toleran kekeringan berdasarkan pemahaman mengenai mekanisme toleransi tanaman yang mendukung hasil tinggi pada cekaman kekeringan masih terbatas pada tanaman cabai. Melalui pemahaman akan mekanisme toleransi tanaman pada lingkungan tercekam, diharapkan akan diperoleh lingkungan yang sesuai untuk seleksi dan diperoleh kriteria seleksi yang mendukung hasil tinggi, sehingga akan diperoleh kemajuan genetik yang signifikan pada program pemuliaan cabai toleran kekeringan. Penelitian bertujuan untuk menentukan kriteria lingkungan dan seleksi yang mendukung hasil tinggi pada cekaman kekeringan pada empat spesies cabai (Capsicum chinense, C. baccatum, C. frutescens, dan C. annuum) berdasarkan pemahaman tentang mekanisme toleransi. Tujuan penelitian juga meliputi identifikasi tingkat toleransi kekeringan pada masing-masing genotipe cabai dan mengetahui pengaruh kekeringan terhadap kualitas buah. Penelitian ini dilakukan dalam empat percobaan, yaitu: (1) menentukan lingkungan seleksi kekeringan pada cabai, (2) mengkarakterisasi tingkat toleransi kekeringan empat spesies cabai dan mengkaji mekanisme toleransinya; (3) mengidentifikasi pengaruh kekeringan terhadap mutu fisik dan kandungan capsaicinoid pada cabai, dan (4) menentukan kriteria seleksi karakter toleran kekeringan yang mendukung hasil cabai. Kadar air media berdasarkan kapasitas lapangan digunakan sebagai lingkungan representatif. Perlakuan cekaman kekeringan dimulai saat tanam hingga kuncup bunga pertama anthesis (mekar). Toleransi tanaman dievaluasi dengan membandingkan penampilan genotipe cabai pada perlakuan kontrol dan cekaman berdasarkan karakter hasil yang didukung oleh karakter morfologi, fisiologi, anatomi, dan kandungan biokimia. Penelitian tersebut memperoleh hasil sebagai berikut: Percobaan pertama menetapkan perlakuan cekaman kekeringan berat (kadar air media 35% kapasitas lapang) sebagai lingkungan seleksi untuk karakter toleransi kekeringan pada cabai. Hal ini berdasarkan nilai koefisien keragaman genetik (KKG) dan heritabilitas arti luas (h2 bs) tertinggi yang ditemukan pada karakter hasil dan karakter seleksi sekunder lainnya pada cekaman kekeringan berat. Pada percobaan kedua digunakan 24 genotipe cabai dari empat spesies cabai yang berhasil diklasifikasikan berdasarkan tingkat toleransi dan peningkatan produksinya terhadap pemberian air. Capsicum annuum: Hot Banana, Arisa, Nazla, Genie; dan C. chinense: Fatali termasuk sangat toleran terhadap kekeringan tetapi tidak responsif terhadap penambahan air. Kelompok ini sesuai dikembangkan di lahan kering. Genotipe Hiyung (C. frutescens) dan C. annuum: Harita, Viola, Perbani, dan Pesona dikategorikan toleran kekeringan dan responsif terhadap penambahan air. Genotipe ini memiliki adaptasi yang lebih luas. Genotipe Anies, Adelina, Neno, Habanero, dan sepuluh genotipe lainnya peka terhadap kekeringan sehingga sesuai dikembangkan di lahan basah. Percobaan ketiga menemukan bahwa toleransi kekeringan tidak terkait dengan spesies cabai tertentu atau tingkat kepedasan tertentu. Pada kondisi cekaman kekeringan, komposisi nordihydrocapsaicin, capsaicin, dan dihydrocapsaicin berubah menyebabkan kandungan capsaicinoid turut berubah pada genotipe toleran dengan kepedasan di bawah 35.000 SHU (Scoville Heat Unit). Mekanisme adaptasi oksidatif, adaptasi osmotik, plastisitas pertumbuhan, partisi asimilasi organ bunga dan buah, optimalisasi penyerapan air maupun menghambat kehilangan air merupakan mekanisme toleransi kekeringan yang ditemukan pada percobaan kedua. Berdasarkan pengetahuan tersebut, pada percobaan keempat disusun idiotipe cabai toleran kekeringan. Berdasarkan percobaan keempat, idiotipe cabai toleran kekeringan memiliki daun banyak dan kecil, daun berwarna gelap, kaya kandungan klorofil, antosianin, dan flavonoid, serta segera berbunga setelah cekaman berlalu. Genotipe toleran berbuah lebih banyak dan memiliki ukuran buah lebih panjang. Karakteristik jumlah daun yang diamati setelah periode penyiraman ulang dan panjang buah merupakan kriteria seleksi tidak langsung untuk toleransi kekeringan yang mendukung hasil tinggi dari keempat spesies cabai. Penelitian ini menjembatani peran fisiologi dalam mendukung pemuliaan tanaman melalui pemahaman tahapan penentuan kriteria seleksi berdasarkan pengetahuan mekanisme toleransi kekeringan. Kriteria seleksi yang diperoleh pada penelitian ini dapat digunakan untuk menyeleksi karakter toleran kekeringan pada cabai.id
dc.description.sponsorshipLembaga Ilmu Pengetahuan Indonesia (LIPI) dan Badan Riset dan Inovasi Nasional (BRIN) atas beasiswa studi program doktor melalui Program Degree By Research. Pusat Penelitian Biologi, LIPI (BRIN), OR Hayati dan Lingkungan (BRIN), dan Pusat Riset Tanaman Hortikultura dan Perkebunan (OR Pertanian dan Pangan, BRIN) atas dukungan pendaaan dan fasilitas riset.id
dc.language.isoidid
dc.publisherIPB (Bogor Agricultural University)id
dc.titleMEKANISME TOLERANSI KEKERINGAN PADA EMPAT SPESIES CABAI UNTUK MENETAPKAN LINGKUNGAN DAN KRITERIA SELEKSIid
dc.title.alternativeMechanism of Drought Tolerance in Four Chili Species to Determine Environment and Selection Criteriaid
dc.typeDissertationid
dc.subject.keywordcabaiid
dc.subject.keywordcapsaicinoidid
dc.subject.keywordkriteria seleksiid
dc.subject.keywordmekanisme avoidanceid
dc.subject.keywordplastisitas pertumbuhanid
dc.subject.keywordlingkungan seleksiid


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record