View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Physics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Titik Kritis dan Nilai Eigen Dinamika Partikel Bermassa di Dalam Geometri Kerr 4+1 Dimensi

      Thumbnail
      View/Open
      Cover (764.6Kb)
      Full text (879.8Kb)
      Lampiran (516.1Kb)
      Date
      2023
      Author
      Subardhi, Muhamad Emir Tabah
      Alatas, Husin
      Ramadhan, Handhika Satrio
      Metadata
      Show full item record
      Abstract
      Pada penelitian sebelumnya telah dibentuk persamaan metrik dari geometri Kerr 4+1 dimensi. Penelitian ini memaparkan karakteristik dari geometri tersebut dengan menggunakan persamaan geodesik dan nilai eigen pada komponen dan . Persamaan geodesik memberikan suatu persamaan gerak yang menggambarkan kondisi partikel bermassa di sekitar geometri Kerr 4+1 dimensi pada kondisi karena objek bergerak pada bidang ekuator. Titik kritis didapatkan dengan saling mensubstitusi ekspresi komponen dan dengan bantuan software Wolfram Mathematica 9.0. Hasil nilai eigen yang didapat terdiri dari bilangan real dan imajiner yang berupa positif maupun negatif. Sehingga karakteristik titik kritis tersebut berupa unstable point dan unstable sadle tergantung dengan nilai parameter m, M, a, p, dan q yang disubstitusi.
       
      In previous research, only the metric equation of the 4+1 dimensional Kerr geometry has been established. So in this paper describes the characteristics of the geometry using geodesic equation and the eigenvalues of and components. The geodesic equation provides an motion equation that describes condition of the massive particle around the 4+1 dimensional Kerr geometry under the condition because the object moves on the equatorial plane. Critical points are obtained by substituting the expressions of of and components with the help of Wolfram Mathematica 9.0 software. The eigenvalue results obtained consists of real and imaginary numbers that are both positive and negative. So that the characteristics of the critical point are unstable point and unstable saddle depending on the substituted parameter values of m, M, a, p, and q.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/117070
      Collections
      • UT - Physics [1230]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository