Show simple item record

dc.contributor.advisorTambunan, Armansyah Halomoan
dc.contributor.advisorSetiawan, Radite PA
dc.contributor.advisorJoelianingsih
dc.contributor.authorEtika S, Tiara
dc.date.accessioned2022-10-13T08:26:22Z
dc.date.available2022-10-13T08:26:22Z
dc.date.issued2022
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/114965
dc.description.abstractKajian termodinamika pada dekomposisi termal bahan lignoselulosa sangat diperlukan untuk pemahaman yang lebih baik tentang kemungkinan produksi biohidrogen semaksimal mungkin. Pada penelitian ini dilakukan simulasi berdasarkan kesetimbangan termodinamika dengan 2 metode yaitu metode stoikiometri dan non stoikiometri. Simulasi model keseimbangan energi bebas Gibbs (model 1) memanfaatkan nilai energi bebas Gibbs dan nilai konstanta kesetimbangannya untuk memprediksi komposisi produk maksimum, khususnya gas hidrogen dan temperatur operasi optimumnya, sedangkan model non stoikiometri (model 2) memanfaatkan minimisasi energi bebas Gibbs. Simulasi model 1 dilakukan dalam rentang suhu 298 – 1500 K, sedangkan simulasi model 2 dilakukan dalam rentang suhu 298 – 1100 K menggunakan selulosa murni, hemiselulosa murni, dan lignin murni serta proporsi ketiganya dalam biomassa. Kajian tersebut menunjukkan bahwa suhu optimum untuk dekomposisi termal selulosa, hemiselulosa, lignin, dan proporsi khusus ketiganya berturut-turut adalah 905.19 K, 931 K, 921 K, dan 919.06 K. Kedua model pada studi ini menyimpulkan bahwa suhu optimum proses dekomposisi termal untuk produksi hidrogen yang lebih tinggi berada pada kisaran 905 K – 931 K. Jumlah H2 maksimal yang diperoleh dari 89.29 gram lignoselulosa berdasarkan model 1 adalah 2.93 gram dan model 2 adalah 3.21 gram. Rasio energi yang dihasilkan untuk proses yang berlangsung dapat diterima untuk pengaplikasian proses dekomposisi termal.id
dc.description.abstractThermodynamic study on the thermal decomposition of lignocellulosic material is needed for a better understanding of the maximum possible production of biohydrogen. In this study, simulations were carried out based on thermodynamic equilibrium with 2 methods, namely stoichiometric and non-stoichiometric methods. The Gibbs free energy model simulation (model 1) utilizes the value of Gibbs free energy and its equilibrium constant value to predict the maximum product composition, especially hydrogen gas and its optimum operating temperature, while the non-stoichiometric model (model 2) utilizes the minimization of Gibbs free energy. Model 1 simulation was carried out in a temperature range of 298 – 1500 K and model 2 was carried out in a temperature range of 298 – 1100 K using pure cellulose, pure hemicellulose, pure lignin and as well as their typical proportion in biomass. The study showed that the optimum temperatures for the thermal decomposition of cellulose, hemicellulose, lignin, and their typical proportion are 905.19 K, 931 K, 921 K, and 919.06 K, respectively. The two models in this study concluded that the optimum temperature of the thermal decomposition process for production the higher hydrogen content was in the range of 905 K – 931 K. The maximum amount of H2 obtained from 89.29 gram of lignocellulose based on model 1 and model 2 are 2.93 gram and 3.21 gram, respectively. The energy ratio was found to be acceptable for thermal decomposition process applications.id
dc.description.sponsorshipPMDSUid
dc.language.isoidid
dc.publisherIPB Universityid
dc.titleAnalisis Kesetimbangan Termodinamika untuk Meningkatkan Komposisi H2 melalui Dekomposisi Termal Biomassaid
dc.title.alternativeAnalysis of Thermodynamic Equilibrium to Increase the Composition of H2 on Biomass Thermal Decompositionid
dc.typeDissertationid
dc.subject.keywordDekomposisi Termalid
dc.subject.keywordEnergi Bebas Gibbsid
dc.subject.keywordRasio Energiid
dc.subject.keywordGas Hidrogenid
dc.subject.keywordKonstanta Kesetimbanganid


Files in this item

No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]

This item appears in the following Collection(s)

Show simple item record