dc.contributor.advisor | Tambunan, Armansyah Halomoan | |
dc.contributor.advisor | Setiawan, Radite PA | |
dc.contributor.advisor | Joelianingsih | |
dc.contributor.author | Etika S, Tiara | |
dc.date.accessioned | 2022-10-13T08:26:22Z | |
dc.date.available | 2022-10-13T08:26:22Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/114965 | |
dc.description.abstract | Kajian termodinamika pada dekomposisi termal bahan lignoselulosa sangat
diperlukan untuk pemahaman yang lebih baik tentang kemungkinan produksi
biohidrogen semaksimal mungkin. Pada penelitian ini dilakukan simulasi
berdasarkan kesetimbangan termodinamika dengan 2 metode yaitu metode
stoikiometri dan non stoikiometri. Simulasi model keseimbangan energi bebas
Gibbs (model 1) memanfaatkan nilai energi bebas Gibbs dan nilai konstanta
kesetimbangannya untuk memprediksi komposisi produk maksimum, khususnya
gas hidrogen dan temperatur operasi optimumnya, sedangkan model non
stoikiometri (model 2) memanfaatkan minimisasi energi bebas Gibbs. Simulasi
model 1 dilakukan dalam rentang suhu 298 – 1500 K, sedangkan simulasi model 2
dilakukan dalam rentang suhu 298 – 1100 K menggunakan selulosa murni,
hemiselulosa murni, dan lignin murni serta proporsi ketiganya dalam biomassa.
Kajian tersebut menunjukkan bahwa suhu optimum untuk dekomposisi termal
selulosa, hemiselulosa, lignin, dan proporsi khusus ketiganya berturut-turut adalah
905.19 K, 931 K, 921 K, dan 919.06 K. Kedua model pada studi ini menyimpulkan
bahwa suhu optimum proses dekomposisi termal untuk produksi hidrogen yang
lebih tinggi berada pada kisaran 905 K – 931 K. Jumlah H2 maksimal yang
diperoleh dari 89.29 gram lignoselulosa berdasarkan model 1 adalah 2.93 gram dan
model 2 adalah 3.21 gram. Rasio energi yang dihasilkan untuk proses yang
berlangsung dapat diterima untuk pengaplikasian proses dekomposisi termal. | id |
dc.description.abstract | Thermodynamic study on the thermal decomposition of lignocellulosic material is needed for a better understanding of the maximum possible production of biohydrogen. In this study, simulations were carried out based on thermodynamic equilibrium with 2 methods, namely stoichiometric and non-stoichiometric methods. The Gibbs free energy model simulation (model 1) utilizes the value of Gibbs free energy and its equilibrium constant value to predict the maximum product composition, especially hydrogen gas and its optimum operating temperature, while the non-stoichiometric model (model 2) utilizes the minimization of Gibbs free energy. Model 1 simulation was carried out in a temperature range of 298 – 1500 K and model 2 was carried out in a temperature range of 298 – 1100 K using pure cellulose, pure hemicellulose, pure lignin and as well as their typical proportion in biomass. The study showed that the optimum temperatures for the thermal decomposition of cellulose, hemicellulose, lignin, and their typical proportion are 905.19 K, 931 K, 921 K, and 919.06 K, respectively. The two models in this study concluded that the optimum temperature of the thermal decomposition process for production the higher hydrogen content was in the range of 905 K – 931 K. The maximum amount of H2 obtained from 89.29 gram of lignocellulose based on model 1 and model 2 are 2.93 gram and 3.21 gram, respectively. The energy ratio was found to be acceptable for thermal decomposition process applications. | id |
dc.description.sponsorship | PMDSU | id |
dc.language.iso | id | id |
dc.publisher | IPB University | id |
dc.title | Analisis Kesetimbangan Termodinamika untuk Meningkatkan Komposisi H2 melalui Dekomposisi Termal Biomassa | id |
dc.title.alternative | Analysis of Thermodynamic Equilibrium to Increase the Composition of H2 on Biomass Thermal Decomposition | id |
dc.type | Dissertation | id |
dc.subject.keyword | Dekomposisi Termal | id |
dc.subject.keyword | Energi Bebas Gibbs | id |
dc.subject.keyword | Rasio Energi | id |
dc.subject.keyword | Gas Hidrogen | id |
dc.subject.keyword | Konstanta Kesetimbangan | id |