View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Fisheries and Marine Science
      • UT - Marine Science And Technology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Fisheries and Marine Science
      • UT - Marine Science And Technology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pemetaan Zona Geomorfologi dan Habitat Bentik Menggunakan Citra SPOT-7 di Pulau Kelapa dan Harapan

      Thumbnail
      View/Open
      Cover (2.067Mb)
      Fullteks (6.286Mb)
      Lampiran (2.258Mb)
      Date
      2022
      Author
      Joni, Muhammad Fatahillah Putra
      Agus, Syamsul Bahri
      Pasaribu, Riza Aitiando
      Metadata
      Show full item record
      Abstract
      Perairan dangkal mempunyai ekosistem yang berkaitan yakni lamun, mangrove, dan karang. Geomorfologi merupakan ilmu yang membahas bentuk muka bumi. Bentuk muka bumi yang terbentuk pada laut mempunyai kedalaman tertentu. Adanya satelit SPOT-7 yang memproduksi citra resolusi tinggi menghasilkan metode Object Based Image Analysis (OBIA). Penggunaan algoritma Support Vector Machine (SVM) pada metode OBIA menghasilkan akurasi yang tinggi. Penelitian ini dilakukan pada perairan Pulau Kelapa dan Harapan, Kepulauan Seribu, DKI Jakarta. Penggunaan metode OBIA dan klasifikasi algoritma SVM dengan 3 level segmentasi. Level 1 menghasilkan 3 kelas yaitu, perairan dalam, perairan dangkal, dan darat. Hasil klasifikasi level 2 menghasilkan 4 kelas zona geomorfologi dengan berbagai kedalaman yaitu, crest, slope, flat, dan lagoon. Zona flat mendominasi lokasi penelitian. Keempat zona tersebut dapat dipetakan kedalamannya dengan baik. Klasifikasi level 3 menghasilkan 6 kelas yaitu DCA, karang, lamun, rubble, makroalga, dan pasir. Kelas lamun mendominasi area penelitian. Akurasi secara keseluruhan yang didapatkan mencapai 76.47%.
       
      Shallow water has some ecosystem that links each other: seagrass, mangrove, and coral. Geomorphology is a science about the shape of the earth's surface. The surface of the planet has a different depth. The appearance of the SPOT-7 imagery satellite that produced high-resolution images developed the Object-Based Image Analysis (OBIA) method. Using the Support Vector Machine (SVM) algorithm in the OBIA method has high accuracy results. This research took place in Kelapa and Harapan Island, Kepulauan Seribu, Jakarta Province. OBIA method and classification using SVM algorithm for 3-level segmentation. Level 1 obtained three classes: deep water, shallow water, and land. Classification level 2 received four categories for geomorphology zone, with the difference in depth: crest, slope, flat, and lagoon. The flat area dominated the research location. The bathymetry of all the four-zone got mapped well. Classification level 3 generated six classes: DCA, coral, seagrass, rubble, macroalgae, and sand. Seagrass class dominated the research area. The classification results produced an overall accuracy value of 76.47%.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/111810
      Collections
      • UT - Marine Science And Technology [2093]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository