A Design of Portable Smart Surveillance Device Based on IoT for Perishable Goods Logistics
Abstract
During transportation, restricted surveillance processes have triggered discrepancies, especially for perishable goods highly vulnerable to environmental factors. Conventional fleets are unable to monitor real-time delivery and goods conditions. Late in capturing and informing abnormal circumstances, causing product spoilage is arduous to prevent. The establishment of technology 4.0, such as the emergence of the internet of things (IoT) and artificial intelligence, offers solutions. This study presented a design of a smart surveillance device for perishable goods logistics based on IoT. Firstly, a requirements analysis is the basis for developing a prototype of the IoT system to monitor the transportation process in real-time. Then, one machine learning technique, specifically artificial neural network (ANN) predicted the remaining shelf life and the engine state during the shipment process. Finally, a developed warning mechanism establish to deal with abnormal conditions, such as sudden coolant failure or fraud in refrigerator settings.
The prototype development deployed DHT sensors, SW-420 sensors, a GPS module, and a microcontroller to display all smart surveillance features proposed in this study, specifically, temperature, humidity, current fleet location, shelf life, engine state, and early warning in real-time. ANN model predicted the quality of goods, represented by the remaining shelf life and engine state, on or off, well with an accuracy of 97,96% and 92,93%, respectively. It is necessary to add other relevant environmental parameters to the predictive modeling of the quality of goods. This work was helpful for logistics managers in ensuring the quality of goods to the customers. Proses pemantauan yang terbatas selama transportasi memicu beberapa ketidaksesuaian, terutama untuk barang yang mudah rusak dimana sangat rentan terhadap faktor lingkungan. Armada konvensional tidak mampu memantau pengiriman dan kondisi barang secara real-time. Keterlambatan dalam menangkap dan menginformasikan kondisi abnormal menyebabkan kerusakan produk sulit untuk dicegah. Kehadiran teknologi 4.0, seperti internet of things (IoT) dan kecerdasan buatan, menawarkan solusi untuk permasalahan ini. Penelitian ini menghadirkan rancangan perangkat pemantauan cerdas untuk logistik barang yang mudah rusak berbasis IoT. Pertama-tama, analisis kebutuhan dilakukan untuk mengembangkan prototipe berbasis sistem IoT yang mampu memantau proses transportasi secara real-time. Salah satu teknik pembelajaran mesin, khususnya jaringan saraf tiruan (JST), digunakan untuk memprediksi sisa umur simpan dan status mesin selama proses pengiriman. Untuk mengatasi kondisi abnormal, seperti kerusakan pendingin mendadak atau penipuan dalam pengaturan pendingin, mekanisme peringatan dikembangkan.
Prototipe yang dikembangkan dengan menggunakan sensor DHT, sensor SW-420, modul GPS, dan mikrokontroler telah mampu menampilkan semua fitur pemantauan cerdas yang diusulkan dalam penelitian ini yaitu temperatur, kelembaban, lokasi armada saat ini, umur simpan, status mesin, dan peringatan dini secara real-time. Model JST memprediksi kualitas barang, yang direpresentasikan oleh sisa umur simpan, dan kondisi mesin, hidup atau mati, dengan akurasi masing-masing 97,96% dan 92,93%. Untuk memperkaya efikasi penelitian ini, perlu ditambahkan parameter lingkungan lain yang relevan dengan pemodelan prediktif kualitas barang. Penelitian ini bermanfaat bagi manajer logistik untuk memastikan kualitas barang kepada pelanggan.
Collections
- MT - Agriculture Technology [2285]